计算网格中的科学工作流调度。规划、保留和数据/网络感知

Yonghong Yan, B. Chapman
{"title":"计算网格中的科学工作流调度。规划、保留和数据/网络感知","authors":"Yonghong Yan, B. Chapman","doi":"10.1109/GRID.2007.4354111","DOIUrl":null,"url":null,"abstract":"A very important issue in executing a scientific workflow in computational grids is how to map and schedule workflow tasks onto multiple distributed resources and handle task dependencies in a timely manner to deliver users' expected performance. In this paper, we present our work to develop and evaluate an advanced workflow scheduler in computational grid environments, the GRACCE scheduler. The GRACCE scheduler applies advanced scheduling techniques, such as resource negotiation and reservation, data/network-aware scheduling and performance prediction in the resource allocation and execution planning process. To evaluate the scheduler, we have set up an experimental environment that models a computational grid in those aspects relevant to workflow scheduling. Our results show the average performance improvement, using the GRACCE scheduler, is about 20% under high resource loads.","PeriodicalId":304508,"journal":{"name":"2007 8th IEEE/ACM International Conference on Grid Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Scientific workflow scheduling in computational grids — Planning, reservation, and data/network-awareness\",\"authors\":\"Yonghong Yan, B. Chapman\",\"doi\":\"10.1109/GRID.2007.4354111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A very important issue in executing a scientific workflow in computational grids is how to map and schedule workflow tasks onto multiple distributed resources and handle task dependencies in a timely manner to deliver users' expected performance. In this paper, we present our work to develop and evaluate an advanced workflow scheduler in computational grid environments, the GRACCE scheduler. The GRACCE scheduler applies advanced scheduling techniques, such as resource negotiation and reservation, data/network-aware scheduling and performance prediction in the resource allocation and execution planning process. To evaluate the scheduler, we have set up an experimental environment that models a computational grid in those aspects relevant to workflow scheduling. Our results show the average performance improvement, using the GRACCE scheduler, is about 20% under high resource loads.\",\"PeriodicalId\":304508,\"journal\":{\"name\":\"2007 8th IEEE/ACM International Conference on Grid Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 8th IEEE/ACM International Conference on Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRID.2007.4354111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 8th IEEE/ACM International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2007.4354111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在计算网格中执行科学工作流的一个非常重要的问题是如何将工作流任务映射和调度到多个分布式资源上,并及时处理任务依赖关系,以提供用户期望的性能。在本文中,我们介绍了我们在计算网格环境中开发和评估高级工作流调度器GRACCE调度器的工作。GRACCE调度器在资源分配和执行规划过程中应用高级调度技术,如资源协商和保留、数据/网络感知调度和性能预测。为了评估调度程序,我们建立了一个实验环境,在与工作流调度相关的方面对计算网格进行建模。我们的结果显示,在高资源负载下,使用GRACCE调度器的平均性能提高了约20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scientific workflow scheduling in computational grids — Planning, reservation, and data/network-awareness
A very important issue in executing a scientific workflow in computational grids is how to map and schedule workflow tasks onto multiple distributed resources and handle task dependencies in a timely manner to deliver users' expected performance. In this paper, we present our work to develop and evaluate an advanced workflow scheduler in computational grid environments, the GRACCE scheduler. The GRACCE scheduler applies advanced scheduling techniques, such as resource negotiation and reservation, data/network-aware scheduling and performance prediction in the resource allocation and execution planning process. To evaluate the scheduler, we have set up an experimental environment that models a computational grid in those aspects relevant to workflow scheduling. Our results show the average performance improvement, using the GRACCE scheduler, is about 20% under high resource loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信