细线程:gpu上基于历史的蒙特卡罗方法

R. Bleile, P. Brantley, D. Richards, S. Dawson, M. S. McKinley, M. O’Brien, H. Childs
{"title":"细线程:gpu上基于历史的蒙特卡罗方法","authors":"R. Bleile, P. Brantley, D. Richards, S. Dawson, M. S. McKinley, M. O’Brien, H. Childs","doi":"10.1109/HPCS48598.2019.9188080","DOIUrl":null,"url":null,"abstract":"A graphics processing unit (GPU) has become a core technology for modern supercomputers. Applications that once ran on supercomputers are being forced to make significant changes to their designs to utilize these new machines. This paper introduces the concept of Thin-Threads as a method for history-based Monte Carlo transport applications on GPUs. The key principles behind Thin-Threads are light memory usage and communication and managing data race issues via atomics. We show that we can achieve a 10x speedup when moving from the traditional method to Thin-Threads on GPUs. Additionally, we demonstrate the viability of the Thin-Threads model at scale for GPU and CPU platforms.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thin-Threads: An Approach for History-Based Monte Carlo on GPUs\",\"authors\":\"R. Bleile, P. Brantley, D. Richards, S. Dawson, M. S. McKinley, M. O’Brien, H. Childs\",\"doi\":\"10.1109/HPCS48598.2019.9188080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graphics processing unit (GPU) has become a core technology for modern supercomputers. Applications that once ran on supercomputers are being forced to make significant changes to their designs to utilize these new machines. This paper introduces the concept of Thin-Threads as a method for history-based Monte Carlo transport applications on GPUs. The key principles behind Thin-Threads are light memory usage and communication and managing data race issues via atomics. We show that we can achieve a 10x speedup when moving from the traditional method to Thin-Threads on GPUs. Additionally, we demonstrate the viability of the Thin-Threads model at scale for GPU and CPU platforms.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图形处理器(GPU)已经成为现代超级计算机的核心技术。曾经在超级计算机上运行的应用程序正被迫对其设计进行重大更改,以利用这些新机器。本文介绍了在gpu上实现基于历史的蒙特卡罗传输的一种方法——瘦线程的概念。瘦线程背后的关键原则是内存使用和通信,以及通过原子管理数据竞争问题。我们展示了在gpu上从传统方法转换为Thin-Threads时,我们可以实现10倍的加速。此外,我们还演示了在GPU和CPU平台上大规模瘦线程模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thin-Threads: An Approach for History-Based Monte Carlo on GPUs
A graphics processing unit (GPU) has become a core technology for modern supercomputers. Applications that once ran on supercomputers are being forced to make significant changes to their designs to utilize these new machines. This paper introduces the concept of Thin-Threads as a method for history-based Monte Carlo transport applications on GPUs. The key principles behind Thin-Threads are light memory usage and communication and managing data race issues via atomics. We show that we can achieve a 10x speedup when moving from the traditional method to Thin-Threads on GPUs. Additionally, we demonstrate the viability of the Thin-Threads model at scale for GPU and CPU platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信