{"title":"混合ARQ的穿孔码与无速率码","authors":"E. Soljanin, N. Varnica, P. Whiting","doi":"10.1109/ITW.2006.1633801","DOIUrl":null,"url":null,"abstract":"Two incremental redundancy hybrid ARQ (IR-HARQ) schemes are compared: one is based on LDPC code ensembles with random transmission assignments, the other is based on recently introduced Raptor codes. A number of important issues, such as rate and power control, and error rate performance after each transmission on time varying binary-input, symmetric-output channels are addressed by analyzing performance of LDPC and Raptor codes on parallel channels. The theoretical results obtained for random code ensembles are tested on several practical code examples by simulation. Both theoretical and simulation results show that both LDPC and Raptor codes are suitable for HARQ schemes. Which codes would make a better choice depends mainly on the width of the signal-to-noise operating range of the HARQ scheme, prior knowledge of that range, and other design parameters and constraints dictated by standards.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Punctured vs Rateless Codes for Hybrid ARQ\",\"authors\":\"E. Soljanin, N. Varnica, P. Whiting\",\"doi\":\"10.1109/ITW.2006.1633801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two incremental redundancy hybrid ARQ (IR-HARQ) schemes are compared: one is based on LDPC code ensembles with random transmission assignments, the other is based on recently introduced Raptor codes. A number of important issues, such as rate and power control, and error rate performance after each transmission on time varying binary-input, symmetric-output channels are addressed by analyzing performance of LDPC and Raptor codes on parallel channels. The theoretical results obtained for random code ensembles are tested on several practical code examples by simulation. Both theoretical and simulation results show that both LDPC and Raptor codes are suitable for HARQ schemes. Which codes would make a better choice depends mainly on the width of the signal-to-noise operating range of the HARQ scheme, prior knowledge of that range, and other design parameters and constraints dictated by standards.\",\"PeriodicalId\":293144,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2006.1633801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two incremental redundancy hybrid ARQ (IR-HARQ) schemes are compared: one is based on LDPC code ensembles with random transmission assignments, the other is based on recently introduced Raptor codes. A number of important issues, such as rate and power control, and error rate performance after each transmission on time varying binary-input, symmetric-output channels are addressed by analyzing performance of LDPC and Raptor codes on parallel channels. The theoretical results obtained for random code ensembles are tested on several practical code examples by simulation. Both theoretical and simulation results show that both LDPC and Raptor codes are suitable for HARQ schemes. Which codes would make a better choice depends mainly on the width of the signal-to-noise operating range of the HARQ scheme, prior knowledge of that range, and other design parameters and constraints dictated by standards.