用深度强化学习解决非线性优化问题

Yue Gao, Qiyue Yang, Huajian Wu, Mingdong Sun
{"title":"用深度强化学习解决非线性优化问题","authors":"Yue Gao, Qiyue Yang, Huajian Wu, Mingdong Sun","doi":"10.1109/ROBIO55434.2022.10011977","DOIUrl":null,"url":null,"abstract":"Nonlinear least-squares problems (NLS) are pop-ular in engineering and scientific fields. Traditional optimization methods such as Newton's method and Gaussian-Newton method (GN) suffer from the sensibility to initial values and the high computational complexity. In this paper, we propose LS-DDPG, a robust optimization method utilizing deep rein-forcement learning algorithms to solve nonlinear least-squares problems. The experiment results on synthetic data demonstrate that the proposed method outperforms Newton's method in terms of computation cost, convergence speed and initial values sensibility. In addition, LS-DDPG is utilized on model predictive control (MPC) problems for trajectory planning and tracking tasks in self-driving with longer prediction horizon and higher accuracy than baseline methods.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Solve Nonlinear Optimization Problem with Deep Reinforcement Learning\",\"authors\":\"Yue Gao, Qiyue Yang, Huajian Wu, Mingdong Sun\",\"doi\":\"10.1109/ROBIO55434.2022.10011977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear least-squares problems (NLS) are pop-ular in engineering and scientific fields. Traditional optimization methods such as Newton's method and Gaussian-Newton method (GN) suffer from the sensibility to initial values and the high computational complexity. In this paper, we propose LS-DDPG, a robust optimization method utilizing deep rein-forcement learning algorithms to solve nonlinear least-squares problems. The experiment results on synthetic data demonstrate that the proposed method outperforms Newton's method in terms of computation cost, convergence speed and initial values sensibility. In addition, LS-DDPG is utilized on model predictive control (MPC) problems for trajectory planning and tracking tasks in self-driving with longer prediction horizon and higher accuracy than baseline methods.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10011977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10011977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性最小二乘问题(NLS)在工程和科学领域都很流行。传统的优化方法如牛顿法和高斯-牛顿法(GN)存在对初始值敏感和计算复杂度高的问题。在本文中,我们提出LS-DDPG,一种利用深度强化学习算法求解非线性最小二乘问题的鲁棒优化方法。在综合数据上的实验结果表明,该方法在计算量、收敛速度和初值敏感性等方面都优于牛顿方法。此外,将LS-DDPG用于自动驾驶轨迹规划和跟踪任务的模型预测控制(MPC)问题,具有比基线方法更长的预测范围和更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Solve Nonlinear Optimization Problem with Deep Reinforcement Learning
Nonlinear least-squares problems (NLS) are pop-ular in engineering and scientific fields. Traditional optimization methods such as Newton's method and Gaussian-Newton method (GN) suffer from the sensibility to initial values and the high computational complexity. In this paper, we propose LS-DDPG, a robust optimization method utilizing deep rein-forcement learning algorithms to solve nonlinear least-squares problems. The experiment results on synthetic data demonstrate that the proposed method outperforms Newton's method in terms of computation cost, convergence speed and initial values sensibility. In addition, LS-DDPG is utilized on model predictive control (MPC) problems for trajectory planning and tracking tasks in self-driving with longer prediction horizon and higher accuracy than baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信