海报:非常规资源威胁的网络攻击预测(CAPTURE)

A. Okutan, Gordon Werner, K. McConky, S. Yang
{"title":"海报:非常规资源威胁的网络攻击预测(CAPTURE)","authors":"A. Okutan, Gordon Werner, K. McConky, S. Yang","doi":"10.1145/3133956.3138834","DOIUrl":null,"url":null,"abstract":"This paper outlines the design, implementation and evaluation of CAPTURE - a novel automated, continuously working cyber attack forecast system. It uses a broad range of unconventional signals from various public and private data sources and a set of signals forecasted via the Auto-Regressive Integrated Moving Average (ARIMA) model. While generating signals, auto cross correlation is used to find out the optimum signal aggregation and lead times. Generated signals are used to train a Bayesian classifier against the ground truth of each attack type. We show that it is possible to forecast future cyber incidents using CAPTURE and the consideration of the lead time could improve forecast performance.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"POSTER: Cyber Attack Prediction of Threats from Unconventional Resources (CAPTURE)\",\"authors\":\"A. Okutan, Gordon Werner, K. McConky, S. Yang\",\"doi\":\"10.1145/3133956.3138834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the design, implementation and evaluation of CAPTURE - a novel automated, continuously working cyber attack forecast system. It uses a broad range of unconventional signals from various public and private data sources and a set of signals forecasted via the Auto-Regressive Integrated Moving Average (ARIMA) model. While generating signals, auto cross correlation is used to find out the optimum signal aggregation and lead times. Generated signals are used to train a Bayesian classifier against the ground truth of each attack type. We show that it is possible to forecast future cyber incidents using CAPTURE and the consideration of the lead time could improve forecast performance.\",\"PeriodicalId\":191367,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3133956.3138834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3138834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文概述了一种新型的自动化、连续工作的网络攻击预测系统CAPTURE的设计、实现和评估。它使用了来自各种公共和私人数据源的广泛的非常规信号,以及通过自回归综合移动平均(ARIMA)模型预测的一组信号。在产生信号的过程中,采用自动互相关的方法找出最优的信号聚合和交货期。生成的信号用于训练贝叶斯分类器,以对抗每种攻击类型的真实情况。我们表明,使用CAPTURE预测未来的网络事件是可能的,并且考虑前置时间可以提高预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POSTER: Cyber Attack Prediction of Threats from Unconventional Resources (CAPTURE)
This paper outlines the design, implementation and evaluation of CAPTURE - a novel automated, continuously working cyber attack forecast system. It uses a broad range of unconventional signals from various public and private data sources and a set of signals forecasted via the Auto-Regressive Integrated Moving Average (ARIMA) model. While generating signals, auto cross correlation is used to find out the optimum signal aggregation and lead times. Generated signals are used to train a Bayesian classifier against the ground truth of each attack type. We show that it is possible to forecast future cyber incidents using CAPTURE and the consideration of the lead time could improve forecast performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信