伦敦地理标记推文的动态空间聚类过程模型

Matteo Mazzamurro, Yue Wu, Weisi Guo
{"title":"伦敦地理标记推文的动态空间聚类过程模型","authors":"Matteo Mazzamurro, Yue Wu, Weisi Guo","doi":"10.1109/ISC246665.2019.9071657","DOIUrl":null,"url":null,"abstract":"Geo-tagged social media data is a key input to many smart city application areas, ranging from mapping consumer demand to understanding location dependent well-being. The sparsity in geo-tagged data, especially in certain cities, means that there is a lack of dynamic spatial point process models for social media data. Having statistically representative spatial models can enable proxy models that improve our understanding of human patterns in urban and suburban areas. Here, we analyse a data set of more than 400,000 Tweets in London to create a spatial point process model of Tweet clusters. We model Tweet clusters as a Poisson Cluster Process. We then track how the point process parameter and spatial entropy evolve over time to create a generative model usable for others, as well as discuss its relevance to urban dynamics and smart city applications.","PeriodicalId":306836,"journal":{"name":"2019 IEEE International Smart Cities Conference (ISC2)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic Spatial Cluster Process Model of Geo-Tagged Tweets in London\",\"authors\":\"Matteo Mazzamurro, Yue Wu, Weisi Guo\",\"doi\":\"10.1109/ISC246665.2019.9071657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geo-tagged social media data is a key input to many smart city application areas, ranging from mapping consumer demand to understanding location dependent well-being. The sparsity in geo-tagged data, especially in certain cities, means that there is a lack of dynamic spatial point process models for social media data. Having statistically representative spatial models can enable proxy models that improve our understanding of human patterns in urban and suburban areas. Here, we analyse a data set of more than 400,000 Tweets in London to create a spatial point process model of Tweet clusters. We model Tweet clusters as a Poisson Cluster Process. We then track how the point process parameter and spatial entropy evolve over time to create a generative model usable for others, as well as discuss its relevance to urban dynamics and smart city applications.\",\"PeriodicalId\":306836,\"journal\":{\"name\":\"2019 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC246665.2019.9071657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC246665.2019.9071657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

地理标记的社交媒体数据是许多智慧城市应用领域的关键输入,从绘制消费者需求到了解依赖于位置的幸福感。地理标记数据的稀疏性,特别是在某些城市,意味着社交媒体数据缺乏动态空间点过程模型。拥有具有统计代表性的空间模型可以实现代理模型,从而提高我们对城市和郊区人类模式的理解。在这里,我们分析了伦敦超过40万条推文的数据集,创建了推文集群的空间点过程模型。我们将Tweet聚类建模为泊松聚类过程。然后,我们跟踪点过程参数和空间熵如何随时间演变,以创建可供其他人使用的生成模型,并讨论其与城市动态和智慧城市应用的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Spatial Cluster Process Model of Geo-Tagged Tweets in London
Geo-tagged social media data is a key input to many smart city application areas, ranging from mapping consumer demand to understanding location dependent well-being. The sparsity in geo-tagged data, especially in certain cities, means that there is a lack of dynamic spatial point process models for social media data. Having statistically representative spatial models can enable proxy models that improve our understanding of human patterns in urban and suburban areas. Here, we analyse a data set of more than 400,000 Tweets in London to create a spatial point process model of Tweet clusters. We model Tweet clusters as a Poisson Cluster Process. We then track how the point process parameter and spatial entropy evolve over time to create a generative model usable for others, as well as discuss its relevance to urban dynamics and smart city applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信