{"title":"卷积神经网络在胸片COVID-19分类中的应用","authors":"F. Zeiser, C. D. da Costa, Gabriel Ss de Oliveira","doi":"10.52591/lxai2021072412","DOIUrl":null,"url":null,"abstract":"Early identification of patients with COVID-19 is essential to enable adequate treatment and to reduce the burden on the health system. The gold standard for COVID-19 detection is the use of RT-PCR tests. However, due to the high demand for tests, these can take days or even weeks in some regions of Brazil. Thus, an alternative for the detection of COVID-19 is the analysis of Chest X-rays (CXR). This paper proposes the evaluation of convolutional neural networks to identify pneumonia due to COVID-19 in CXR. The proposed methodology consists of an evaluation of six convolutional architectures pre-trained with the ImageNet dataset: InceptionResNetV2, InceptionV3, MovileNetV2, ResNet50, VGG16, and Xception. The obtained results for our methodology demonstrate that the Xception architecture presented a superior performance in the classification of CXR, with an Accuracy of 85.64%, Sensitivity of 85.71%, Specificity of 85.65%, F1-score of 85.49%, and an AUC of 0.9648.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional Neural Networks Evaluation for COVID-19 Classification on Chest Radiographs\",\"authors\":\"F. Zeiser, C. D. da Costa, Gabriel Ss de Oliveira\",\"doi\":\"10.52591/lxai2021072412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early identification of patients with COVID-19 is essential to enable adequate treatment and to reduce the burden on the health system. The gold standard for COVID-19 detection is the use of RT-PCR tests. However, due to the high demand for tests, these can take days or even weeks in some regions of Brazil. Thus, an alternative for the detection of COVID-19 is the analysis of Chest X-rays (CXR). This paper proposes the evaluation of convolutional neural networks to identify pneumonia due to COVID-19 in CXR. The proposed methodology consists of an evaluation of six convolutional architectures pre-trained with the ImageNet dataset: InceptionResNetV2, InceptionV3, MovileNetV2, ResNet50, VGG16, and Xception. The obtained results for our methodology demonstrate that the Xception architecture presented a superior performance in the classification of CXR, with an Accuracy of 85.64%, Sensitivity of 85.71%, Specificity of 85.65%, F1-score of 85.49%, and an AUC of 0.9648.\",\"PeriodicalId\":196347,\"journal\":{\"name\":\"LatinX in AI at International Conference on Machine Learning 2021\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at International Conference on Machine Learning 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai2021072412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai2021072412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional Neural Networks Evaluation for COVID-19 Classification on Chest Radiographs
Early identification of patients with COVID-19 is essential to enable adequate treatment and to reduce the burden on the health system. The gold standard for COVID-19 detection is the use of RT-PCR tests. However, due to the high demand for tests, these can take days or even weeks in some regions of Brazil. Thus, an alternative for the detection of COVID-19 is the analysis of Chest X-rays (CXR). This paper proposes the evaluation of convolutional neural networks to identify pneumonia due to COVID-19 in CXR. The proposed methodology consists of an evaluation of six convolutional architectures pre-trained with the ImageNet dataset: InceptionResNetV2, InceptionV3, MovileNetV2, ResNet50, VGG16, and Xception. The obtained results for our methodology demonstrate that the Xception architecture presented a superior performance in the classification of CXR, with an Accuracy of 85.64%, Sensitivity of 85.71%, Specificity of 85.65%, F1-score of 85.49%, and an AUC of 0.9648.