多分辨率支持向量机

Xuhui Shao, V. Cherkassky
{"title":"多分辨率支持向量机","authors":"Xuhui Shao, V. Cherkassky","doi":"10.1109/IJCNN.1999.831103","DOIUrl":null,"url":null,"abstract":"The support vector machine (SVM) is a new learning methodology based on Vapnik-Chervonenkis (VC) theory (Vapnik, 1982, 1995). SVM has recently attracted growing research interest due to its ability to learn classification and regression tasks with high-dimensional data. The SVM formulation uses kernel representation. The existing algorithm leaves the choice of the kernel type and kernel parameters to the user. This paper describes an important extension to the SVM method: the multiresolution SVM (M-SVM) in which several kernels of different scales can be used simultaneously to approximate the target function. The proposed M-SVM approach enables 'automatic' selection of the 'optimal' kernel width. This usually results in better prediction accuracy of SVM models.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multi-resolution support vector machine\",\"authors\":\"Xuhui Shao, V. Cherkassky\",\"doi\":\"10.1109/IJCNN.1999.831103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The support vector machine (SVM) is a new learning methodology based on Vapnik-Chervonenkis (VC) theory (Vapnik, 1982, 1995). SVM has recently attracted growing research interest due to its ability to learn classification and regression tasks with high-dimensional data. The SVM formulation uses kernel representation. The existing algorithm leaves the choice of the kernel type and kernel parameters to the user. This paper describes an important extension to the SVM method: the multiresolution SVM (M-SVM) in which several kernels of different scales can be used simultaneously to approximate the target function. The proposed M-SVM approach enables 'automatic' selection of the 'optimal' kernel width. This usually results in better prediction accuracy of SVM models.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.831103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

支持向量机(SVM)是基于Vapnik- chervonenkis (VC)理论(Vapnik, 1982, 1995)的一种新的学习方法。支持向量机由于能够学习高维数据的分类和回归任务,近年来引起了越来越多的研究兴趣。支持向量机公式使用核表示。现有的算法将内核类型和内核参数的选择留给用户。本文描述了支持向量机方法的一个重要扩展:多分辨率支持向量机(M-SVM),其中可以同时使用几个不同尺度的核来近似目标函数。所提出的M-SVM方法可以“自动”选择“最佳”核宽度。这通常会提高支持向量机模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-resolution support vector machine
The support vector machine (SVM) is a new learning methodology based on Vapnik-Chervonenkis (VC) theory (Vapnik, 1982, 1995). SVM has recently attracted growing research interest due to its ability to learn classification and regression tasks with high-dimensional data. The SVM formulation uses kernel representation. The existing algorithm leaves the choice of the kernel type and kernel parameters to the user. This paper describes an important extension to the SVM method: the multiresolution SVM (M-SVM) in which several kernels of different scales can be used simultaneously to approximate the target function. The proposed M-SVM approach enables 'automatic' selection of the 'optimal' kernel width. This usually results in better prediction accuracy of SVM models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信