减少网络参数和设计余量不确定性的学习过程

E. Seve, J. Pesic, C. Delezoide, Y. Pointurier
{"title":"减少网络参数和设计余量不确定性的学习过程","authors":"E. Seve, J. Pesic, C. Delezoide, Y. Pointurier","doi":"10.1364/OFC.2017.W4F.6","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to lower the network design margins by improving the estimation of the signal-tonoise ratio (SNR) given by a quality of transmission (QoT) estimator, for new optical demands in a brownfield phase, based on a mathematical model of the physics of propagation. During the greenfield phase and the network operation, we collect and correlate information on the QoT input parameters, issued from the established initial demands and available almost for free from the network elements: amplifiers output power and the SNR at the coherent receiver side. Since we have some uncertainties on these input parameters of the QoT model, we use a machine learning algorithm to reduce them, improving the accuracy of the SNR estimation. With this learning process and for a European backbone network (28 nodes, 41 links), we could reduce the QoT inaccuracy by several dBs for new demands whatever the amount of uncertainties of the initial parameters.","PeriodicalId":371742,"journal":{"name":"IEEE/OSA Journal of Optical Communications and Networking","volume":"310 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Learning process for reducing uncertainties on network parameters and design margins\",\"authors\":\"E. Seve, J. Pesic, C. Delezoide, Y. Pointurier\",\"doi\":\"10.1364/OFC.2017.W4F.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to lower the network design margins by improving the estimation of the signal-tonoise ratio (SNR) given by a quality of transmission (QoT) estimator, for new optical demands in a brownfield phase, based on a mathematical model of the physics of propagation. During the greenfield phase and the network operation, we collect and correlate information on the QoT input parameters, issued from the established initial demands and available almost for free from the network elements: amplifiers output power and the SNR at the coherent receiver side. Since we have some uncertainties on these input parameters of the QoT model, we use a machine learning algorithm to reduce them, improving the accuracy of the SNR estimation. With this learning process and for a European backbone network (28 nodes, 41 links), we could reduce the QoT inaccuracy by several dBs for new demands whatever the amount of uncertainties of the initial parameters.\",\"PeriodicalId\":371742,\"journal\":{\"name\":\"IEEE/OSA Journal of Optical Communications and Networking\",\"volume\":\"310 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/OSA Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/OFC.2017.W4F.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/OSA Journal of Optical Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OFC.2017.W4F.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

在本文中,我们提出通过改进由传输质量(QoT)估计器给出的信噪比(SNR)的估计来降低网络设计裕度,基于传播物理的数学模型,用于棕场相位的新光学需求。在绿地阶段和网络运行期间,我们收集和关联有关QoT输入参数的信息,这些信息来自既定的初始需求,并且几乎可以从网络元素中免费获得:放大器输出功率和相干接收器端的信噪比。由于我们在QoT模型的这些输入参数上存在一些不确定性,我们使用机器学习算法来减少它们,提高信噪比估计的准确性。通过这个学习过程,对于一个欧洲骨干网(28个节点,41条链路),无论初始参数的不确定性有多大,我们都可以将新需求的QoT不准确性降低几个db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning process for reducing uncertainties on network parameters and design margins
In this paper, we propose to lower the network design margins by improving the estimation of the signal-tonoise ratio (SNR) given by a quality of transmission (QoT) estimator, for new optical demands in a brownfield phase, based on a mathematical model of the physics of propagation. During the greenfield phase and the network operation, we collect and correlate information on the QoT input parameters, issued from the established initial demands and available almost for free from the network elements: amplifiers output power and the SNR at the coherent receiver side. Since we have some uncertainties on these input parameters of the QoT model, we use a machine learning algorithm to reduce them, improving the accuracy of the SNR estimation. With this learning process and for a European backbone network (28 nodes, 41 links), we could reduce the QoT inaccuracy by several dBs for new demands whatever the amount of uncertainties of the initial parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信