非id的在线正则化两两学习。观察

Yimo Qin, Bin Zou, Jingjing Zeng, Zhifei Sheng, Lei Yin
{"title":"非id的在线正则化两两学习。观察","authors":"Yimo Qin, Bin Zou, Jingjing Zeng, Zhifei Sheng, Lei Yin","doi":"10.1142/s0219691321500417","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the online regularized pairwise learning (ORPL) algorithm with least squares loss function for non-independently and identically distribution (non-i.i.d.) observations. We first establish new Bennett’s inequalities for [Formula: see text]-mixing sequence, geometrically [Formula: see text]-mixing sequence, [Formula: see text]-geometrically ergodic Markov chain and uniformly ergodic Markov chain. Then we establish the convergence rates for the last iterate of the ORPL algorithm with the polynomially decaying step sizes and varying regularization parameters for non-i.i.d. observations. These established results in this paper extend the previously known results of ORPL from i.i.d. observations to the case of non-i.i.d. observations, and the established result of ORPL for [Formula: see text]-mixing can be nearly optimal rate of ORPL for i.i.d. observations with [Formula: see text]-norm.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online regularized pairwise learning with non-i.i.d. observations\",\"authors\":\"Yimo Qin, Bin Zou, Jingjing Zeng, Zhifei Sheng, Lei Yin\",\"doi\":\"10.1142/s0219691321500417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the online regularized pairwise learning (ORPL) algorithm with least squares loss function for non-independently and identically distribution (non-i.i.d.) observations. We first establish new Bennett’s inequalities for [Formula: see text]-mixing sequence, geometrically [Formula: see text]-mixing sequence, [Formula: see text]-geometrically ergodic Markov chain and uniformly ergodic Markov chain. Then we establish the convergence rates for the last iterate of the ORPL algorithm with the polynomially decaying step sizes and varying regularization parameters for non-i.i.d. observations. These established results in this paper extend the previously known results of ORPL from i.i.d. observations to the case of non-i.i.d. observations, and the established result of ORPL for [Formula: see text]-mixing can be nearly optimal rate of ORPL for i.i.d. observations with [Formula: see text]-norm.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了具有最小二乘损失函数的在线正则化成对学习(ORPL)算法,用于非独立和同分布(non-i.i.d)观测。我们首先建立了[公式:见文]-混合序列、[公式:见文]-混合序列、[公式:见文]-几何遍历马尔可夫链和均匀遍历马尔可夫链的新的Bennett不等式。然后,在步长呈多项式衰减且正则化参数变化的情况下,建立了ORPL算法最后一次迭代的收敛速率。观察。本文的这些既定结果将以往已知的ORPL结果从i.i.d的观测扩展到非i.i.d的情况。[公式:见文]-范数混合的ORPL建立结果可以接近于[公式:见文]-范数的i.i.d观测的ORPL最优率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online regularized pairwise learning with non-i.i.d. observations
In this paper, we consider the online regularized pairwise learning (ORPL) algorithm with least squares loss function for non-independently and identically distribution (non-i.i.d.) observations. We first establish new Bennett’s inequalities for [Formula: see text]-mixing sequence, geometrically [Formula: see text]-mixing sequence, [Formula: see text]-geometrically ergodic Markov chain and uniformly ergodic Markov chain. Then we establish the convergence rates for the last iterate of the ORPL algorithm with the polynomially decaying step sizes and varying regularization parameters for non-i.i.d. observations. These established results in this paper extend the previously known results of ORPL from i.i.d. observations to the case of non-i.i.d. observations, and the established result of ORPL for [Formula: see text]-mixing can be nearly optimal rate of ORPL for i.i.d. observations with [Formula: see text]-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信