基于mpls的异构流保持时间网络中基于状态的最优路由

P. He, J. Regnier
{"title":"基于mpls的异构流保持时间网络中基于状态的最优路由","authors":"P. He, J. Regnier","doi":"10.1109/NGI.2005.1431666","DOIUrl":null,"url":null,"abstract":"This study investigates routing in a MPLS-based (multi-protocol label switching) IP network with heterogeneous holding time traffic (for example, an IP call versus an IP conference). Our basic idea is to exploit the large differences existing in the holding time of different types of traffic to make more efficient resource allocation decisions in the admission and routing processes. In particular, we investigate the concept of vacating, in which requests with short holding times vacate the bandwidth to requests with long holding times. Based on an analytical framework we developed, we analyze the vacating idea and propose several state-dependent routing schemes, namely preventive-vacating routing (PW), preemptive-vacating routing (PEV) and restricted-access routing (RAR). Both the analytical and simulation results indicate that within an effective range we found in traffic mix, our vacating schemes outperform the traditional LLR+TR (least loaded routing+trunk reservation) and Diff-SDR (differentiated dynamic shortest-distance routing scheme) S. Yang et al., (2001). Moreover, we deduce an approximated expression to compute the cost of accepting a long or short request, which leads to an approximated least cost routing (A-LCR) scheme. Through simulation study, A-LCR presents not only its good performing in network throughput, but also its particular flow control mechanism.","PeriodicalId":435785,"journal":{"name":"Next Generation Internet Networks, 2005","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-dependent optimal routing in MPLS-based networks with heterogeneous flow holding times\",\"authors\":\"P. He, J. Regnier\",\"doi\":\"10.1109/NGI.2005.1431666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates routing in a MPLS-based (multi-protocol label switching) IP network with heterogeneous holding time traffic (for example, an IP call versus an IP conference). Our basic idea is to exploit the large differences existing in the holding time of different types of traffic to make more efficient resource allocation decisions in the admission and routing processes. In particular, we investigate the concept of vacating, in which requests with short holding times vacate the bandwidth to requests with long holding times. Based on an analytical framework we developed, we analyze the vacating idea and propose several state-dependent routing schemes, namely preventive-vacating routing (PW), preemptive-vacating routing (PEV) and restricted-access routing (RAR). Both the analytical and simulation results indicate that within an effective range we found in traffic mix, our vacating schemes outperform the traditional LLR+TR (least loaded routing+trunk reservation) and Diff-SDR (differentiated dynamic shortest-distance routing scheme) S. Yang et al., (2001). Moreover, we deduce an approximated expression to compute the cost of accepting a long or short request, which leads to an approximated least cost routing (A-LCR) scheme. Through simulation study, A-LCR presents not only its good performing in network throughput, but also its particular flow control mechanism.\",\"PeriodicalId\":435785,\"journal\":{\"name\":\"Next Generation Internet Networks, 2005\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Generation Internet Networks, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NGI.2005.1431666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Generation Internet Networks, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NGI.2005.1431666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了基于mpls(多协议标签交换)的IP网络中具有异构保持时间流量(例如,IP呼叫与IP会议)的路由。我们的基本思想是利用不同类型的流量在保持时间上存在的巨大差异,在接纳和路由过程中做出更有效的资源分配决策。特别地,我们研究了空化的概念,其中持有时间短的请求将带宽空化给持有时间长的请求。在此基础上,分析了空化思想,提出了几种状态相关的路由方案,即预防性空化路由(PW)、抢先空化路由(PEV)和限制访问路由(RAR)。分析和仿真结果均表明,在流量组合的有效范围内,我们的空化方案优于传统的LLR+TR(最小负载路由+中继预留)和difff - sdr(差异化动态最短距离路由方案)S. Yang等,(2001)。此外,我们推导了一个近似表达式来计算接受长请求或短请求的成本,从而得出近似最小成本路由(a - lcr)方案。通过仿真研究,A-LCR不仅在网络吞吐量方面表现出良好的性能,而且具有独特的流量控制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-dependent optimal routing in MPLS-based networks with heterogeneous flow holding times
This study investigates routing in a MPLS-based (multi-protocol label switching) IP network with heterogeneous holding time traffic (for example, an IP call versus an IP conference). Our basic idea is to exploit the large differences existing in the holding time of different types of traffic to make more efficient resource allocation decisions in the admission and routing processes. In particular, we investigate the concept of vacating, in which requests with short holding times vacate the bandwidth to requests with long holding times. Based on an analytical framework we developed, we analyze the vacating idea and propose several state-dependent routing schemes, namely preventive-vacating routing (PW), preemptive-vacating routing (PEV) and restricted-access routing (RAR). Both the analytical and simulation results indicate that within an effective range we found in traffic mix, our vacating schemes outperform the traditional LLR+TR (least loaded routing+trunk reservation) and Diff-SDR (differentiated dynamic shortest-distance routing scheme) S. Yang et al., (2001). Moreover, we deduce an approximated expression to compute the cost of accepting a long or short request, which leads to an approximated least cost routing (A-LCR) scheme. Through simulation study, A-LCR presents not only its good performing in network throughput, but also its particular flow control mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信