{"title":"具有符号处理能力的神经网络","authors":"D. Vogiatzis, A. Stafylopatis","doi":"10.1109/IJCNN.1999.830809","DOIUrl":null,"url":null,"abstract":"We propose a neural network method for the generation of symbolic expressions using reinforcement learning. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network endowed with symbolic processing ability\",\"authors\":\"D. Vogiatzis, A. Stafylopatis\",\"doi\":\"10.1109/IJCNN.1999.830809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a neural network method for the generation of symbolic expressions using reinforcement learning. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.830809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.830809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neural network endowed with symbolic processing ability
We propose a neural network method for the generation of symbolic expressions using reinforcement learning. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function.