应用机器学习算法和Landsat 8估算平福省常绿阔叶林地上碳储量

Nguyen Thanh Tuan, N. Phu, N. Quy, H. Nhung
{"title":"应用机器学习算法和Landsat 8估算平福省常绿阔叶林地上碳储量","authors":"Nguyen Thanh Tuan, N. Phu, N. Quy, H. Nhung","doi":"10.25073/2588-1094/vnuees.4890","DOIUrl":null,"url":null,"abstract":"Abstract: The assessment of carbon stocks is one of the key measurements to support climate change mitigation policies. The research applied Landsat 8 satellite imagery combined with field-measurements using four machine learning methods (random forest - RF, artificial neural networks - NNET, support vector machines – SVM, and linear regression - LM) to estimate aboveground carbon in evergreen broadleaf forest in Binh Phuoc province. The field sample plots were randomly divided into training (96 plots) and testing (24 plots) data. The results showed that RF yielded the greatest precision with an R2 value above 0,9 and RMSE below 6 ton/ha on the training data, with an R2 value of 0,41 and RMSE of 11,04 ton/ha on the testing data. The estimate of forest carbon stock increased distinctly from the mean value of 59,80 ton/ha in the very poor forest to 87,78 ton/ha in the rich forest. The results found in the present study demonstrated that Landsat 8 imagery in conjunction with RF has the appropriate to estimate aboveground carbon stock in evergreen broadleaf forest-leaved in Binh Phuoc province. \nKeywords: Random forest, aboveground carbon, REDD+, forest carbon estimation. \n  \n ","PeriodicalId":247618,"journal":{"name":"VNU Journal of Science: Earth and Environmental Sciences","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applied Machine Learning Algorithms and Landsat 8 for Estimating Aboveground Carbon Stock in Evergreen Broadleaf Forest in Binh Phuoc Province\",\"authors\":\"Nguyen Thanh Tuan, N. Phu, N. Quy, H. Nhung\",\"doi\":\"10.25073/2588-1094/vnuees.4890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The assessment of carbon stocks is one of the key measurements to support climate change mitigation policies. The research applied Landsat 8 satellite imagery combined with field-measurements using four machine learning methods (random forest - RF, artificial neural networks - NNET, support vector machines – SVM, and linear regression - LM) to estimate aboveground carbon in evergreen broadleaf forest in Binh Phuoc province. The field sample plots were randomly divided into training (96 plots) and testing (24 plots) data. The results showed that RF yielded the greatest precision with an R2 value above 0,9 and RMSE below 6 ton/ha on the training data, with an R2 value of 0,41 and RMSE of 11,04 ton/ha on the testing data. The estimate of forest carbon stock increased distinctly from the mean value of 59,80 ton/ha in the very poor forest to 87,78 ton/ha in the rich forest. The results found in the present study demonstrated that Landsat 8 imagery in conjunction with RF has the appropriate to estimate aboveground carbon stock in evergreen broadleaf forest-leaved in Binh Phuoc province. \\nKeywords: Random forest, aboveground carbon, REDD+, forest carbon estimation. \\n  \\n \",\"PeriodicalId\":247618,\"journal\":{\"name\":\"VNU Journal of Science: Earth and Environmental Sciences\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Earth and Environmental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1094/vnuees.4890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Earth and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1094/vnuees.4890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:碳储量评估是支持气候变化减缓政策的关键措施之一。本研究将Landsat 8卫星图像与野外测量相结合,采用随机森林(RF)、人工神经网络(NNET)、支持向量机(SVM)和线性回归(LM)四种机器学习方法对平福省常绿阔叶林的地上碳进行了估算。田间样地随机分为训练样地(96块)和检验样地(24块)。结果表明,在训练数据上,RF精度最高,R2值在0.9以上,RMSE在6 t /ha以下;在测试数据上,RF精度最高,R2值为0.41,RMSE为11.04 t /ha。森林碳储量估计值从极贫林的平均值59,80 t /ha明显增加到富林的平均值87,78 t /ha。本研究的结果表明,Landsat 8影像与RF相结合可以较好地估算平福省常绿阔叶林的地上碳储量。关键词:随机森林,地上碳,REDD+,森林碳估算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applied Machine Learning Algorithms and Landsat 8 for Estimating Aboveground Carbon Stock in Evergreen Broadleaf Forest in Binh Phuoc Province
Abstract: The assessment of carbon stocks is one of the key measurements to support climate change mitigation policies. The research applied Landsat 8 satellite imagery combined with field-measurements using four machine learning methods (random forest - RF, artificial neural networks - NNET, support vector machines – SVM, and linear regression - LM) to estimate aboveground carbon in evergreen broadleaf forest in Binh Phuoc province. The field sample plots were randomly divided into training (96 plots) and testing (24 plots) data. The results showed that RF yielded the greatest precision with an R2 value above 0,9 and RMSE below 6 ton/ha on the training data, with an R2 value of 0,41 and RMSE of 11,04 ton/ha on the testing data. The estimate of forest carbon stock increased distinctly from the mean value of 59,80 ton/ha in the very poor forest to 87,78 ton/ha in the rich forest. The results found in the present study demonstrated that Landsat 8 imagery in conjunction with RF has the appropriate to estimate aboveground carbon stock in evergreen broadleaf forest-leaved in Binh Phuoc province. Keywords: Random forest, aboveground carbon, REDD+, forest carbon estimation.    
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信