语义NLP技术在法律研究信息检索系统中的应用

{"title":"语义NLP技术在法律研究信息检索系统中的应用","authors":"","doi":"10.33140/amlai.02.01.05","DOIUrl":null,"url":null,"abstract":"Companies involved in providing legal research services to lawyers, such as LexisNexis or Westlaw, have rapidly incorporated natural language processing (NLP) into their database systems to deal with the massive amounts of legal texts contained within them. These NLP techniques, which perform analysis on natural language texts by taking advantage of methods developed in the fields of computational linguistics and artificial intelligence, have potential applications ranging from text summarization all the way to the prediction of court judgments. However, a potential concern with the use of this technology is that professionals will come to depend on systems, over which they have little control or understanding, as a source of knowledge. While recent strides in AI and deep learning have led to increased effectiveness in NLP techniques, the decision-making processes of these algorithms have progressively become less intuitive for humans to understand. Concerns about the interpretability of patented legal services such as LexisNexis are more pertinent than ever. The following survey conducted for current NLP techniques shows that one potential avenue to make algorithms in NLP more explainable is to incorporate symbol-based methods that take advantage of knowledge models generated for specific domains. An example of this can be seen in NLP techniques developed to facilitate the retrieval of inventive information from patent applications.","PeriodicalId":377073,"journal":{"name":"Advances in Machine Learning & Artificial Intelligence","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic NLP Technologies in Information Retrieval Systems for Legal Research\",\"authors\":\"\",\"doi\":\"10.33140/amlai.02.01.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Companies involved in providing legal research services to lawyers, such as LexisNexis or Westlaw, have rapidly incorporated natural language processing (NLP) into their database systems to deal with the massive amounts of legal texts contained within them. These NLP techniques, which perform analysis on natural language texts by taking advantage of methods developed in the fields of computational linguistics and artificial intelligence, have potential applications ranging from text summarization all the way to the prediction of court judgments. However, a potential concern with the use of this technology is that professionals will come to depend on systems, over which they have little control or understanding, as a source of knowledge. While recent strides in AI and deep learning have led to increased effectiveness in NLP techniques, the decision-making processes of these algorithms have progressively become less intuitive for humans to understand. Concerns about the interpretability of patented legal services such as LexisNexis are more pertinent than ever. The following survey conducted for current NLP techniques shows that one potential avenue to make algorithms in NLP more explainable is to incorporate symbol-based methods that take advantage of knowledge models generated for specific domains. An example of this can be seen in NLP techniques developed to facilitate the retrieval of inventive information from patent applications.\",\"PeriodicalId\":377073,\"journal\":{\"name\":\"Advances in Machine Learning & Artificial Intelligence\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Machine Learning & Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/amlai.02.01.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Machine Learning & Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/amlai.02.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为律师提供法律研究服务的公司,如LexisNexis或Westlaw,已经迅速将自然语言处理(NLP)整合到他们的数据库系统中,以处理其中包含的大量法律文本。这些NLP技术通过利用计算语言学和人工智能领域开发的方法对自然语言文本进行分析,具有从文本摘要到法院判决预测的潜在应用。然而,使用这项技术的一个潜在问题是,专业人员将依赖于他们几乎无法控制或理解的系统作为知识来源。虽然人工智能和深度学习的最新进展提高了自然语言处理技术的有效性,但这些算法的决策过程逐渐变得不那么直观,人类无法理解。对LexisNexis等专利法律服务的可解释性的担忧比以往任何时候都更有意义。以下针对当前NLP技术进行的调查表明,使NLP算法更具可解释性的一个潜在途径是结合基于符号的方法,利用为特定领域生成的知识模型。这方面的一个例子可以在为方便从专利申请中检索创造性信息而开发的NLP技术中看到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic NLP Technologies in Information Retrieval Systems for Legal Research
Companies involved in providing legal research services to lawyers, such as LexisNexis or Westlaw, have rapidly incorporated natural language processing (NLP) into their database systems to deal with the massive amounts of legal texts contained within them. These NLP techniques, which perform analysis on natural language texts by taking advantage of methods developed in the fields of computational linguistics and artificial intelligence, have potential applications ranging from text summarization all the way to the prediction of court judgments. However, a potential concern with the use of this technology is that professionals will come to depend on systems, over which they have little control or understanding, as a source of knowledge. While recent strides in AI and deep learning have led to increased effectiveness in NLP techniques, the decision-making processes of these algorithms have progressively become less intuitive for humans to understand. Concerns about the interpretability of patented legal services such as LexisNexis are more pertinent than ever. The following survey conducted for current NLP techniques shows that one potential avenue to make algorithms in NLP more explainable is to incorporate symbol-based methods that take advantage of knowledge models generated for specific domains. An example of this can be seen in NLP techniques developed to facilitate the retrieval of inventive information from patent applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信