深度神经网络在BM@N和SPD实验中的粒子跟踪应用

P. Goncharov, D. Rusov, Anastasiia Nikolskaia, E. Shchavelev, G. Ososkov
{"title":"深度神经网络在BM@N和SPD实验中的粒子跟踪应用","authors":"P. Goncharov, D. Rusov, Anastasiia Nikolskaia, E. Shchavelev, G. Ososkov","doi":"10.22323/1.429.0005","DOIUrl":null,"url":null,"abstract":"Particle tracking is an essential part of any high-energy physics experiment. Well-known tracking algorithms based on the Kalman filter are not scaling well with the amounts of data being produced in modern experiments. In our work we present a particle tracking approach based on deep neural networks for the BM@N experiment and future SPD experiment. We have already applied similar approaches for BM@N RUN 6 and BES-III Monte-Carlo simulation data. This work is the next step in our ongoing study of tracking with the help of machine learning. Revised algorithms - combination of Recurrent Neural Network (RNN) and Graph Neural Network (GNN) for the BM@N RUN 7 Monte-Carlo simulation data, and GNN for the preliminary SPD Monte-Carlo simulation data are presented. Results of the track efficiency and processing speed for both experiments are demonstrated.","PeriodicalId":262901,"journal":{"name":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep neural network applications for particle tracking at the BM@N and SPD experiments\",\"authors\":\"P. Goncharov, D. Rusov, Anastasiia Nikolskaia, E. Shchavelev, G. Ososkov\",\"doi\":\"10.22323/1.429.0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle tracking is an essential part of any high-energy physics experiment. Well-known tracking algorithms based on the Kalman filter are not scaling well with the amounts of data being produced in modern experiments. In our work we present a particle tracking approach based on deep neural networks for the BM@N experiment and future SPD experiment. We have already applied similar approaches for BM@N RUN 6 and BES-III Monte-Carlo simulation data. This work is the next step in our ongoing study of tracking with the help of machine learning. Revised algorithms - combination of Recurrent Neural Network (RNN) and Graph Neural Network (GNN) for the BM@N RUN 7 Monte-Carlo simulation data, and GNN for the preliminary SPD Monte-Carlo simulation data are presented. Results of the track efficiency and processing speed for both experiments are demonstrated.\",\"PeriodicalId\":262901,\"journal\":{\"name\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.429.0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Workshop on Deep Learning in Computational Physics — PoS(DLCP2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.429.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粒子跟踪是任何高能物理实验的重要组成部分。著名的基于卡尔曼滤波的跟踪算法不能很好地适应现代实验中产生的数据量。在我们的工作中,我们提出了一种基于深度神经网络的粒子跟踪方法,用于BM@N实验和未来的SPD实验。我们已经对BM@N RUN 6和BES-III蒙特卡罗模拟数据应用了类似的方法。这项工作是我们正在进行的机器学习跟踪研究的下一步。提出了改进的算法-用于BM@N RUN 7蒙特卡罗模拟数据的递归神经网络(RNN)和图形神经网络(GNN)的组合,以及用于初步SPD蒙特卡罗模拟数据的GNN。验证了两种实验的跟踪效率和处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network applications for particle tracking at the BM@N and SPD experiments
Particle tracking is an essential part of any high-energy physics experiment. Well-known tracking algorithms based on the Kalman filter are not scaling well with the amounts of data being produced in modern experiments. In our work we present a particle tracking approach based on deep neural networks for the BM@N experiment and future SPD experiment. We have already applied similar approaches for BM@N RUN 6 and BES-III Monte-Carlo simulation data. This work is the next step in our ongoing study of tracking with the help of machine learning. Revised algorithms - combination of Recurrent Neural Network (RNN) and Graph Neural Network (GNN) for the BM@N RUN 7 Monte-Carlo simulation data, and GNN for the preliminary SPD Monte-Carlo simulation data are presented. Results of the track efficiency and processing speed for both experiments are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信