通信信号调制识别中的对抗性攻击

Gang Yang, Xiaolei Wang, Lulu Wang, Yi Zhang, Yung-Su Han, Xin Tan, Shang Yong Zhang
{"title":"通信信号调制识别中的对抗性攻击","authors":"Gang Yang, Xiaolei Wang, Lulu Wang, Yi Zhang, Yung-Su Han, Xin Tan, Shang Yong Zhang","doi":"10.1109/ICICSP55539.2022.10050592","DOIUrl":null,"url":null,"abstract":"Convolutional network models (CNN) are very vulnerable to adversarial samples, which poses a serious challenge to the security of CNN models. Based on the task of CNN's modulation and identification of communication signals, we propose a white-box attack algorithm, the shortest distance attack method (SD-Alg), which can generate extremely small disturbances and greatly reduce the classification performance of the model. Experiments show that our algorithm excels in attack success rate, running time and adversarial perturbation size among the same type of algorithms.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adversarial Attack on Communication Signal Modulation Recognition\",\"authors\":\"Gang Yang, Xiaolei Wang, Lulu Wang, Yi Zhang, Yung-Su Han, Xin Tan, Shang Yong Zhang\",\"doi\":\"10.1109/ICICSP55539.2022.10050592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional network models (CNN) are very vulnerable to adversarial samples, which poses a serious challenge to the security of CNN models. Based on the task of CNN's modulation and identification of communication signals, we propose a white-box attack algorithm, the shortest distance attack method (SD-Alg), which can generate extremely small disturbances and greatly reduce the classification performance of the model. Experiments show that our algorithm excels in attack success rate, running time and adversarial perturbation size among the same type of algorithms.\",\"PeriodicalId\":281095,\"journal\":{\"name\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICSP55539.2022.10050592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

卷积网络模型(CNN)极易受到对抗样本的攻击,这对CNN模型的安全性提出了严峻的挑战。基于CNN调制和识别通信信号的任务,我们提出了一种白盒攻击算法,即最短距离攻击法(SD-Alg),该算法可以产生极小的干扰,大大降低了模型的分类性能。实验表明,该算法在攻击成功率、运行时间和对抗扰动大小等方面优于同类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Attack on Communication Signal Modulation Recognition
Convolutional network models (CNN) are very vulnerable to adversarial samples, which poses a serious challenge to the security of CNN models. Based on the task of CNN's modulation and identification of communication signals, we propose a white-box attack algorithm, the shortest distance attack method (SD-Alg), which can generate extremely small disturbances and greatly reduce the classification performance of the model. Experiments show that our algorithm excels in attack success rate, running time and adversarial perturbation size among the same type of algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信