具有右不变度量的微分同胚群上的变分二阶插值

Franccois-Xavier Vialard
{"title":"具有右不变度量的微分同胚群上的变分二阶插值","authors":"Franccois-Xavier Vialard","doi":"10.1142/9789811200137_0001","DOIUrl":null,"url":null,"abstract":"In this note, we propose a variational framework in which the minimization of the acceleration on the group of diffeomorphisms endowed with a right-invariant metric is well-posed. It relies on constraining the acceleration to belong to a Sobolev space of higher-order than the order of the metric in order to gain compactness. It provides the theoretical guarantee of existence of minimizers which is compulsory for numerical simulations.","PeriodicalId":367095,"journal":{"name":"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore","volume":"2553 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Variational Second-Order Interpolation on the Group of Diffeomorphisms with a Right-Invariant Metric\",\"authors\":\"Franccois-Xavier Vialard\",\"doi\":\"10.1142/9789811200137_0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we propose a variational framework in which the minimization of the acceleration on the group of diffeomorphisms endowed with a right-invariant metric is well-posed. It relies on constraining the acceleration to belong to a Sobolev space of higher-order than the order of the metric in order to gain compactness. It provides the theoretical guarantee of existence of minimizers which is compulsory for numerical simulations.\",\"PeriodicalId\":367095,\"journal\":{\"name\":\"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore\",\"volume\":\"2553 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811200137_0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811200137_0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这篇笔记中,我们提出了一个变分框架,在这个框架中,赋予一个右不变度量的微分同态群上加速度的最小化是适定的。它依赖于约束加速度属于比度规阶高阶的Sobolev空间,以获得紧性。它提供了最小值存在的理论保证,这是数值模拟的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Second-Order Interpolation on the Group of Diffeomorphisms with a Right-Invariant Metric
In this note, we propose a variational framework in which the minimization of the acceleration on the group of diffeomorphisms endowed with a right-invariant metric is well-posed. It relies on constraining the acceleration to belong to a Sobolev space of higher-order than the order of the metric in order to gain compactness. It provides the theoretical guarantee of existence of minimizers which is compulsory for numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信