SRConfig:一种提高n层应用性能的相互依赖软配置的经验方法

Yuliang Shi, Xudong Zhao, Shanqing Guo, Shijun Liu, Li-zhen Cui
{"title":"SRConfig:一种提高n层应用性能的相互依赖软配置的经验方法","authors":"Yuliang Shi, Xudong Zhao, Shanqing Guo, Shijun Liu, Li-zhen Cui","doi":"10.1109/SCC.2016.84","DOIUrl":null,"url":null,"abstract":"Efficient resources utilization and better system performance are always two important objectives that service providers pursue to enjoy a maximum profit. In this paper, through analyzing experimental measurements, we study the performance impact of interdependent soft resources on an n-tier application benchmark - the RUBiS system. Soft resources are vital factors that influence hardware resources usage and overall application performance. Improper soft configurations can result in correlated bottlenecks and make performance degradation, so tuning the configuration of soft resources is imperative. Based on the experimental measurements, SRConfig method is applied to predict the soft configurations through adopting the back propagation neural network in n-tier application. Experimental results validate the accuracy and efficacy of our method.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SRConfig: An Empirical Method of Interdependent Soft Configurations for Improving Performance in n-Tier Application\",\"authors\":\"Yuliang Shi, Xudong Zhao, Shanqing Guo, Shijun Liu, Li-zhen Cui\",\"doi\":\"10.1109/SCC.2016.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient resources utilization and better system performance are always two important objectives that service providers pursue to enjoy a maximum profit. In this paper, through analyzing experimental measurements, we study the performance impact of interdependent soft resources on an n-tier application benchmark - the RUBiS system. Soft resources are vital factors that influence hardware resources usage and overall application performance. Improper soft configurations can result in correlated bottlenecks and make performance degradation, so tuning the configuration of soft resources is imperative. Based on the experimental measurements, SRConfig method is applied to predict the soft configurations through adopting the back propagation neural network in n-tier application. Experimental results validate the accuracy and efficacy of our method.\",\"PeriodicalId\":115693,\"journal\":{\"name\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2016.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有效的资源利用和更好的系统性能一直是服务提供商追求利润最大化的两个重要目标。本文通过分析实验测量结果,研究了相互依赖的软资源对n层应用基准RUBiS系统性能的影响。软资源是影响硬件资源使用和整体应用程序性能的重要因素。不适当的软配置可能导致相关瓶颈并导致性能下降,因此调优软资源的配置势在必行。在实验测量的基础上,采用SRConfig方法在n层应用中采用反向传播神经网络对软配置进行预测。实验结果验证了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SRConfig: An Empirical Method of Interdependent Soft Configurations for Improving Performance in n-Tier Application
Efficient resources utilization and better system performance are always two important objectives that service providers pursue to enjoy a maximum profit. In this paper, through analyzing experimental measurements, we study the performance impact of interdependent soft resources on an n-tier application benchmark - the RUBiS system. Soft resources are vital factors that influence hardware resources usage and overall application performance. Improper soft configurations can result in correlated bottlenecks and make performance degradation, so tuning the configuration of soft resources is imperative. Based on the experimental measurements, SRConfig method is applied to predict the soft configurations through adopting the back propagation neural network in n-tier application. Experimental results validate the accuracy and efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信