提高铝合金非对称轧制工艺塑性效果的实验研究

Anna Kozhemyakina, A. Pesin, D. Pustovoytov, Leonid Nosov, Anna Baryshnikova, Natalia Lokotunina, Dmitry Grachev
{"title":"提高铝合金非对称轧制工艺塑性效果的实验研究","authors":"Anna Kozhemyakina, A. Pesin, D. Pustovoytov, Leonid Nosov, Anna Baryshnikova, Natalia Lokotunina, Dmitry Grachev","doi":"10.21741/9781644902615-36","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper the effect of asymmetric rolling on the possibility of increasing the technological plasticity of aluminum alloys was investigated. The experimental research was carried out on a laboratory asymmetric rolling mill with an individual drive of the work rolls with the possibility of creating a speed ratio from 1.0 to 5.0. It was shown that the increase of speed ratio of the work rolls from 1.0 to 5.0 significantly reduce the rolling force in comparison with symmetric rolling. Rolling force decreased in 1.9 times for alloy AD33 (AA6061), in 2.3 times for alloy AMg6, in 3.2 times for alloy D16 (AA2024). At the same time the technological plasticity was increased. Technological plasticity characterizes the ability of a material to undergo higher thickness reductions without fracture under certain conditions of stress, temperature, and strain rate. In asymmetric rolling the thickness reduction was increased from 48 to 87% for alloy D16, from 50 to 59% for alloy AMg6, and from 40 to 75% for alloy AD33 in comparison with symmetric rolling. In all cases the samples had initially room temperature and were subjected only to deformation heating and friction heating. Extremely high thickness reduction (87%) was achieved by a single pass asymmetric rolling (at speed ratio 5.0) for alloy D16. It was found that the ductility of the alloy D16 was 12.3% after asymmetric rolling with a thickness reduction of 87% and without the use of annealing. This was approximately 2 times higher than the initial ductility (6.2%) of the same alloy in the initial annealed state and much higher than ductility (0.3%) after symmetric rolling. New technological schemes of sheet rolling of aluminum alloys with high ductility and increased technological plasticity have been developed.","PeriodicalId":242571,"journal":{"name":"Superplasticity in Advanced Materials","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of the effect of increasing technological plasticity during asymmetric rolling of aluminum alloys\",\"authors\":\"Anna Kozhemyakina, A. Pesin, D. Pustovoytov, Leonid Nosov, Anna Baryshnikova, Natalia Lokotunina, Dmitry Grachev\",\"doi\":\"10.21741/9781644902615-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper the effect of asymmetric rolling on the possibility of increasing the technological plasticity of aluminum alloys was investigated. The experimental research was carried out on a laboratory asymmetric rolling mill with an individual drive of the work rolls with the possibility of creating a speed ratio from 1.0 to 5.0. It was shown that the increase of speed ratio of the work rolls from 1.0 to 5.0 significantly reduce the rolling force in comparison with symmetric rolling. Rolling force decreased in 1.9 times for alloy AD33 (AA6061), in 2.3 times for alloy AMg6, in 3.2 times for alloy D16 (AA2024). At the same time the technological plasticity was increased. Technological plasticity characterizes the ability of a material to undergo higher thickness reductions without fracture under certain conditions of stress, temperature, and strain rate. In asymmetric rolling the thickness reduction was increased from 48 to 87% for alloy D16, from 50 to 59% for alloy AMg6, and from 40 to 75% for alloy AD33 in comparison with symmetric rolling. In all cases the samples had initially room temperature and were subjected only to deformation heating and friction heating. Extremely high thickness reduction (87%) was achieved by a single pass asymmetric rolling (at speed ratio 5.0) for alloy D16. It was found that the ductility of the alloy D16 was 12.3% after asymmetric rolling with a thickness reduction of 87% and without the use of annealing. This was approximately 2 times higher than the initial ductility (6.2%) of the same alloy in the initial annealed state and much higher than ductility (0.3%) after symmetric rolling. New technological schemes of sheet rolling of aluminum alloys with high ductility and increased technological plasticity have been developed.\",\"PeriodicalId\":242571,\"journal\":{\"name\":\"Superplasticity in Advanced Materials\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superplasticity in Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902615-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superplasticity in Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902615-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了非对称轧制对提高铝合金工艺塑性可能性的影响。实验研究在实验室非对称轧机上进行,工作辊单独驱动,可能产生1.0到5.0的速比。结果表明:与对称轧制相比,工作辊速比从1.0提高到5.0显著降低了轧制力;合金AD33 (AA6061)轧制力下降1.9倍,合金AMg6下降2.3倍,合金D16 (AA2024)轧制力下降3.2倍。同时提高了工艺塑性。工艺塑性表征的是材料在一定的应力、温度和应变速率条件下承受更高厚度的减小而不断裂的能力。与对称轧制相比,非对称轧制时,D16合金的厚度减小率从48%提高到87%,AMg6合金的厚度减小率从50%提高到59%,AD33合金的厚度减小率从40%提高到75%。在所有情况下,样品最初是室温的,只受到变形加热和摩擦加热。通过单道次非对称轧制(速度比5.0),D16合金的减薄率达到了87%。结果表明,不对称轧制后D16合金的塑性为12.3%,厚度减薄87%。这比同一合金在初始退火状态下的初始延展性(6.2%)高约2倍,比对称轧制后的初始延展性(0.3%)高得多。开发了高延展性、高工艺塑性铝合金板材轧制的新工艺方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study of the effect of increasing technological plasticity during asymmetric rolling of aluminum alloys
Abstract. In this paper the effect of asymmetric rolling on the possibility of increasing the technological plasticity of aluminum alloys was investigated. The experimental research was carried out on a laboratory asymmetric rolling mill with an individual drive of the work rolls with the possibility of creating a speed ratio from 1.0 to 5.0. It was shown that the increase of speed ratio of the work rolls from 1.0 to 5.0 significantly reduce the rolling force in comparison with symmetric rolling. Rolling force decreased in 1.9 times for alloy AD33 (AA6061), in 2.3 times for alloy AMg6, in 3.2 times for alloy D16 (AA2024). At the same time the technological plasticity was increased. Technological plasticity characterizes the ability of a material to undergo higher thickness reductions without fracture under certain conditions of stress, temperature, and strain rate. In asymmetric rolling the thickness reduction was increased from 48 to 87% for alloy D16, from 50 to 59% for alloy AMg6, and from 40 to 75% for alloy AD33 in comparison with symmetric rolling. In all cases the samples had initially room temperature and were subjected only to deformation heating and friction heating. Extremely high thickness reduction (87%) was achieved by a single pass asymmetric rolling (at speed ratio 5.0) for alloy D16. It was found that the ductility of the alloy D16 was 12.3% after asymmetric rolling with a thickness reduction of 87% and without the use of annealing. This was approximately 2 times higher than the initial ductility (6.2%) of the same alloy in the initial annealed state and much higher than ductility (0.3%) after symmetric rolling. New technological schemes of sheet rolling of aluminum alloys with high ductility and increased technological plasticity have been developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信