基于最大生成模糊值的分裂:一种迭代聚类算法

Minyar Sassi Hidri, Mohamed Amine Baatout
{"title":"基于最大生成模糊值的分裂:一种迭代聚类算法","authors":"Minyar Sassi Hidri, Mohamed Amine Baatout","doi":"10.1109/FUZZ-IEEE.2015.7337803","DOIUrl":null,"url":null,"abstract":"Clustering has always been an important research topic that plays an important role in a broad range of applications, from information retrieval to CRM (Customer Relationship Management). It can be described as the process of dividing or grouping a set of data into classes of similar objects. The main goal of this paper is to develop an enhanced fuzzy clustering algorithm which determines the optimal number of clusters based on the detection of the two maximum values to split the worst clusters. For this, we use a new method incrementing the number of clusters in the main loop of an iterative clustering algorithm. Experimental results and comparisons are given to illustrate the performance of the new splitting method compared to the iterative one.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2-Maximum spanning fuzzy values-based splitting: an iterative clustering algorithm\",\"authors\":\"Minyar Sassi Hidri, Mohamed Amine Baatout\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering has always been an important research topic that plays an important role in a broad range of applications, from information retrieval to CRM (Customer Relationship Management). It can be described as the process of dividing or grouping a set of data into classes of similar objects. The main goal of this paper is to develop an enhanced fuzzy clustering algorithm which determines the optimal number of clusters based on the detection of the two maximum values to split the worst clusters. For this, we use a new method incrementing the number of clusters in the main loop of an iterative clustering algorithm. Experimental results and comparisons are given to illustrate the performance of the new splitting method compared to the iterative one.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从信息检索到客户关系管理(CRM),聚类一直是一个重要的研究课题,在广泛的应用中发挥着重要作用。它可以被描述为将一组数据划分或分组为类似对象的过程。本文的主要目标是开发一种增强型模糊聚类算法,该算法通过检测两个最大值来确定最优聚类数,从而将最差聚类拆分。为此,我们使用了一种新的方法,在迭代聚类算法的主循环中增加聚类的数量。实验结果和对比说明了新分割方法与迭代分割方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Maximum spanning fuzzy values-based splitting: an iterative clustering algorithm
Clustering has always been an important research topic that plays an important role in a broad range of applications, from information retrieval to CRM (Customer Relationship Management). It can be described as the process of dividing or grouping a set of data into classes of similar objects. The main goal of this paper is to develop an enhanced fuzzy clustering algorithm which determines the optimal number of clusters based on the detection of the two maximum values to split the worst clusters. For this, we use a new method incrementing the number of clusters in the main loop of an iterative clustering algorithm. Experimental results and comparisons are given to illustrate the performance of the new splitting method compared to the iterative one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信