复面体的对角线和A∞-态射的张量积

Guillaume Laplante-Anfossi, Thibaut Mazuir
{"title":"复面体的对角线和A∞-态射的张量积","authors":"Guillaume Laplante-Anfossi, Thibaut Mazuir","doi":"10.5802/jep.221","DOIUrl":null,"url":null,"abstract":"We define a cellular approximation for the diagonal of the Forcey--Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic A-infinity morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The diagonal of the multiplihedra and the tensor product of A ∞ -morphisms\",\"authors\":\"Guillaume Laplante-Anfossi, Thibaut Mazuir\",\"doi\":\"10.5802/jep.221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a cellular approximation for the diagonal of the Forcey--Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic A-infinity morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们定义了多面体的力-Loday实现对角线的元胞逼近,并赋予它们在关联面体Loday实现上兼容的拓扑元胞操作双模结构。这为我们提供了一个拓扑和代数a无穷态射的模型,以及它们的张量积的通用和显式公式。我们研究了这个新定义的张量积的单一性,并总结了几个应用,特别是在代数和辛拓扑中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diagonal of the multiplihedra and the tensor product of A ∞ -morphisms
We define a cellular approximation for the diagonal of the Forcey--Loday realizations of the multiplihedra, and endow them with a compatible topological cellular operadic bimodule structure over the Loday realizations of the associahedra. This provides us with a model for topological and algebraic A-infinity morphisms, as well as a universal and explicit formula for their tensor product. We study the monoidal properties of this newly defined tensor product and conclude by outlining several applications, notably in algebraic and symplectic topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信