视频推荐与多门混合专家软演员评论家

Dingcheng Li, Xu Li, Jun Wang, P. Li
{"title":"视频推荐与多门混合专家软演员评论家","authors":"Dingcheng Li, Xu Li, Jun Wang, P. Li","doi":"10.1145/3397271.3401238","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a reinforcement learning based large scale multi-objective ranking system for optimizing short-video recommendation on an industrial video sharing platform. Multiple competing ranking objective and implicit selection bias in user feedback are the main challenges in real-world platform. In order to address those challenges, we integrate multi-gate mixture of experts and soft actor critic into the ranking system. We demonstrated that our proposed framework can greatly reduce the loss function compared with systems only based on single strategies.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Video Recommendation with Multi-gate Mixture of Experts Soft Actor Critic\",\"authors\":\"Dingcheng Li, Xu Li, Jun Wang, P. Li\",\"doi\":\"10.1145/3397271.3401238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a reinforcement learning based large scale multi-objective ranking system for optimizing short-video recommendation on an industrial video sharing platform. Multiple competing ranking objective and implicit selection bias in user feedback are the main challenges in real-world platform. In order to address those challenges, we integrate multi-gate mixture of experts and soft actor critic into the ranking system. We demonstrated that our proposed framework can greatly reduce the loss function compared with systems only based on single strategies.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种基于强化学习的大规模多目标排名系统,用于优化工业视频分享平台上的短视频推荐。用户反馈中的多重竞争排名目标和隐式选择偏差是现实平台中的主要挑战。为了解决这些挑战,我们将专家和软演员评论家的多门混合集成到排名系统中。我们证明,与仅基于单一策略的系统相比,我们提出的框架可以大大减少损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Recommendation with Multi-gate Mixture of Experts Soft Actor Critic
In this paper, we propose a reinforcement learning based large scale multi-objective ranking system for optimizing short-video recommendation on an industrial video sharing platform. Multiple competing ranking objective and implicit selection bias in user feedback are the main challenges in real-world platform. In order to address those challenges, we integrate multi-gate mixture of experts and soft actor critic into the ranking system. We demonstrated that our proposed framework can greatly reduce the loss function compared with systems only based on single strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信