特殊有理曲面上的负曲线

M. Dumnicki, L. Farnik, Krishna Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasinska
{"title":"特殊有理曲面上的负曲线","authors":"M. Dumnicki, L. Farnik, Krishna Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasinska","doi":"10.18778/8142-814-9.06","DOIUrl":null,"url":null,"abstract":"We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve and nine Fermat points. As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds for the surfaces we consider. The note contains also some problems for future attention.","PeriodicalId":273656,"journal":{"name":"Analytic and Algebraic Geometry 3","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Negative curves on special rational surfaces\",\"authors\":\"M. Dumnicki, L. Farnik, Krishna Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasinska\",\"doi\":\"10.18778/8142-814-9.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve and nine Fermat points. As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds for the surfaces we consider. The note contains also some problems for future attention.\",\"PeriodicalId\":273656,\"journal\":{\"name\":\"Analytic and Algebraic Geometry 3\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic and Algebraic Geometry 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/8142-814-9.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic and Algebraic Geometry 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/8142-814-9.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了在复射影平面上由点的特殊组态爆破得到的曲面上的负曲线。我们的主要结果涉及以下构型:三次曲线上的非常一般点,椭圆曲线上的3-扭转点和九个费马点。作为我们分析的结果,我们也证明了有界负性猜想对我们所考虑的曲面成立。该照会还载有一些今后需要注意的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negative curves on special rational surfaces
We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve and nine Fermat points. As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds for the surfaces we consider. The note contains also some problems for future attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信