M. Dumnicki, L. Farnik, Krishna Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasinska
{"title":"特殊有理曲面上的负曲线","authors":"M. Dumnicki, L. Farnik, Krishna Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasinska","doi":"10.18778/8142-814-9.06","DOIUrl":null,"url":null,"abstract":"We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve and nine Fermat points. As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds for the surfaces we consider. The note contains also some problems for future attention.","PeriodicalId":273656,"journal":{"name":"Analytic and Algebraic Geometry 3","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Negative curves on special rational surfaces\",\"authors\":\"M. Dumnicki, L. Farnik, Krishna Hanumanthu, G. Malara, T. Szemberg, J. Szpond, H. Tutaj-Gasinska\",\"doi\":\"10.18778/8142-814-9.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve and nine Fermat points. As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds for the surfaces we consider. The note contains also some problems for future attention.\",\"PeriodicalId\":273656,\"journal\":{\"name\":\"Analytic and Algebraic Geometry 3\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic and Algebraic Geometry 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/8142-814-9.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic and Algebraic Geometry 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/8142-814-9.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve and nine Fermat points. As a consequence of our analysis, we also show that the Bounded Negativity Conjecture holds for the surfaces we consider. The note contains also some problems for future attention.