{"title":"基于随机光照的FMCW雷达成像新方法","authors":"Prateek Nallabolu, Changzhi Li","doi":"10.1109/WiSNeT46826.2020.9037583","DOIUrl":null,"url":null,"abstract":"Compressed Sensing (CS) has provided a viable approach to undersample a sparse signal and reconstruct it perfectly. In this paper, the simulation results of a frequency-modulated continuous-wave (FMCW) radar, which employs a CS based data acquisition and reconstruction algorithm to recover a sparse 2-D target frame using fewer number of scans are presented. A 16-element antenna array based on digital beamforming approach is used on the receiver end to obtain random spatial measurements of the target frame, which is the key to compressed sensing. A linear relationship is established between the total received FMCW beat signal for each scan and the 2-D sparse target frame using a basis transform matrix. Simulations of the proposed radar are performed in MATLAB and the reconstruction results for different noise levels are presented.","PeriodicalId":394796,"journal":{"name":"2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Radar Imaging Method Based on Random Illuminations Using FMCW Radar\",\"authors\":\"Prateek Nallabolu, Changzhi Li\",\"doi\":\"10.1109/WiSNeT46826.2020.9037583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed Sensing (CS) has provided a viable approach to undersample a sparse signal and reconstruct it perfectly. In this paper, the simulation results of a frequency-modulated continuous-wave (FMCW) radar, which employs a CS based data acquisition and reconstruction algorithm to recover a sparse 2-D target frame using fewer number of scans are presented. A 16-element antenna array based on digital beamforming approach is used on the receiver end to obtain random spatial measurements of the target frame, which is the key to compressed sensing. A linear relationship is established between the total received FMCW beat signal for each scan and the 2-D sparse target frame using a basis transform matrix. Simulations of the proposed radar are performed in MATLAB and the reconstruction results for different noise levels are presented.\",\"PeriodicalId\":394796,\"journal\":{\"name\":\"2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WiSNeT46826.2020.9037583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WiSNeT46826.2020.9037583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Radar Imaging Method Based on Random Illuminations Using FMCW Radar
Compressed Sensing (CS) has provided a viable approach to undersample a sparse signal and reconstruct it perfectly. In this paper, the simulation results of a frequency-modulated continuous-wave (FMCW) radar, which employs a CS based data acquisition and reconstruction algorithm to recover a sparse 2-D target frame using fewer number of scans are presented. A 16-element antenna array based on digital beamforming approach is used on the receiver end to obtain random spatial measurements of the target frame, which is the key to compressed sensing. A linear relationship is established between the total received FMCW beat signal for each scan and the 2-D sparse target frame using a basis transform matrix. Simulations of the proposed radar are performed in MATLAB and the reconstruction results for different noise levels are presented.