通过3D变形平面图形绘图

K. Buchin, W. Evans, Fabrizio Frati, I. Kostitsyna, M. Löffler, Tim Ophelders, A. Wolff
{"title":"通过3D变形平面图形绘图","authors":"K. Buchin, W. Evans, Fabrizio Frati, I. Kostitsyna, M. Löffler, Tim Ophelders, A. Wolff","doi":"10.48550/arXiv.2210.05384","DOIUrl":null,"url":null,"abstract":". In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an n -vertex planar graph, there exists a piecewise-linear crossing-free 3D morph with O ( n 2 ) steps that transforms one drawing into the other. We also give some evidence why it is difficult to obtain a linear lower bound (which exists in 2D) for the number of steps of a crossing-free 3D morph.","PeriodicalId":266155,"journal":{"name":"Conference on Current Trends in Theory and Practice of Informatics","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Morphing Planar Graph Drawings Through 3D\",\"authors\":\"K. Buchin, W. Evans, Fabrizio Frati, I. Kostitsyna, M. Löffler, Tim Ophelders, A. Wolff\",\"doi\":\"10.48550/arXiv.2210.05384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an n -vertex planar graph, there exists a piecewise-linear crossing-free 3D morph with O ( n 2 ) steps that transforms one drawing into the other. We also give some evidence why it is difficult to obtain a linear lower bound (which exists in 2D) for the number of steps of a crossing-free 3D morph.\",\"PeriodicalId\":266155,\"journal\":{\"name\":\"Conference on Current Trends in Theory and Practice of Informatics\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Current Trends in Theory and Practice of Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.05384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Current Trends in Theory and Practice of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.05384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

。本文研究平面直线图之间的无交叉三维变形。我们证明,对于任意两个(不一定是拓扑等价的)n顶点平面图的平面直线图,存在一个O (n 2)步的分段线性无交叉3D变形,将一个图转换为另一个图。我们也给出了一些证据,为什么很难获得一个线性下界(存在于二维)的步骤数的一个无交叉的三维变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphing Planar Graph Drawings Through 3D
. In this paper, we investigate crossing-free 3D morphs between planar straight-line drawings. We show that, for any two (not necessarily topologically equivalent) planar straight-line drawings of an n -vertex planar graph, there exists a piecewise-linear crossing-free 3D morph with O ( n 2 ) steps that transforms one drawing into the other. We also give some evidence why it is difficult to obtain a linear lower bound (which exists in 2D) for the number of steps of a crossing-free 3D morph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信