Yehong Xu, Dan He, P. Chao, Jiwon Kim, Wen Hua, Xiaofang Zhou
{"title":"使用低质量蓝牙读数进行路由重建","authors":"Yehong Xu, Dan He, P. Chao, Jiwon Kim, Wen Hua, Xiaofang Zhou","doi":"10.1145/3397536.3422224","DOIUrl":null,"url":null,"abstract":"Route reconstruction targets at recovering the actual routes of objects moving on an underlying road network from their times-tamped position measurements. This fundamental pre-processing step to many location-based applications has been extensively studied for GPS data, which are object-centric and relatively densely sampled data. In this paper, we investigate the problem of route reconstruction using data collected from road-side Bluetooth scanners. In many cities, Bluetooth scanners are installed in road networks for monitoring the movement of Bluetooth-enabled devices. To address new challenges caused by such reader-centric Bluetooth data including spatial and temporal distortion, a new route reconstruction framework is proposed to transform Bluetooth readings through a family of distortion suppression strategies such that the transformed data can work well with the Hidden Markov model (HMM) map-matching approach. Extensive experiments are conducted to evaluate different transformation strategies with real-world datasets. The experimental results show that when the algorithm uses the baseline or the proposed transformation strategies, the map matching F1 score can be increased by up to 10% depending on the severity of distortion.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Route Reconstruction Using Low-Quality Bluetooth Readings\",\"authors\":\"Yehong Xu, Dan He, P. Chao, Jiwon Kim, Wen Hua, Xiaofang Zhou\",\"doi\":\"10.1145/3397536.3422224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Route reconstruction targets at recovering the actual routes of objects moving on an underlying road network from their times-tamped position measurements. This fundamental pre-processing step to many location-based applications has been extensively studied for GPS data, which are object-centric and relatively densely sampled data. In this paper, we investigate the problem of route reconstruction using data collected from road-side Bluetooth scanners. In many cities, Bluetooth scanners are installed in road networks for monitoring the movement of Bluetooth-enabled devices. To address new challenges caused by such reader-centric Bluetooth data including spatial and temporal distortion, a new route reconstruction framework is proposed to transform Bluetooth readings through a family of distortion suppression strategies such that the transformed data can work well with the Hidden Markov model (HMM) map-matching approach. Extensive experiments are conducted to evaluate different transformation strategies with real-world datasets. The experimental results show that when the algorithm uses the baseline or the proposed transformation strategies, the map matching F1 score can be increased by up to 10% depending on the severity of distortion.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Route Reconstruction Using Low-Quality Bluetooth Readings
Route reconstruction targets at recovering the actual routes of objects moving on an underlying road network from their times-tamped position measurements. This fundamental pre-processing step to many location-based applications has been extensively studied for GPS data, which are object-centric and relatively densely sampled data. In this paper, we investigate the problem of route reconstruction using data collected from road-side Bluetooth scanners. In many cities, Bluetooth scanners are installed in road networks for monitoring the movement of Bluetooth-enabled devices. To address new challenges caused by such reader-centric Bluetooth data including spatial and temporal distortion, a new route reconstruction framework is proposed to transform Bluetooth readings through a family of distortion suppression strategies such that the transformed data can work well with the Hidden Markov model (HMM) map-matching approach. Extensive experiments are conducted to evaluate different transformation strategies with real-world datasets. The experimental results show that when the algorithm uses the baseline or the proposed transformation strategies, the map matching F1 score can be increased by up to 10% depending on the severity of distortion.