应用粒子群算法确定概率密度估计中的带宽参数

Hai-Li Liang, Xian-Min Shen
{"title":"应用粒子群算法确定概率密度估计中的带宽参数","authors":"Hai-Li Liang, Xian-Min Shen","doi":"10.1109/ICMLC.2011.6016868","DOIUrl":null,"url":null,"abstract":"The determination of bandwidth parameter is a critical factor for the performance of probability density estimation method. The advanced parameter selection methods, such as the bootstrap method, the least-squares cross-validation (LSCV) method and the biased cross-validation (BCV) method, always need the help of the brute-force search or exhaustive search to find the optimal bandwidth parameters. In this paper, we apply five particle swarm optimization (PSO) algorithms-standard PSO (SPSO), PSO with a constriction factor (PSOCF), Gaussian PSO (GPSO), Gaussian PSO with Gaussian jump (GPSOGJ) and Gaussian PSO with Cauchy jump (GPSOCJ)-to determine the optimal bandwidths. In order to experimentally validate the feasibility and effectiveness of selecting the optimal parameters by using PSO algorithms, we carry out some numerical simulations on four univariate artificial datasets: Uniform dataset, Normal dataset, Exponential dataset and Rayleigh dataset. The finally comparative results show that our strategies are well-performed and Gaussian PSO with jump methods can obtain the better estimations than other PSO algorithms.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Applying particle swarm optimization to determine the bandwidth parameter in probability density estimation\",\"authors\":\"Hai-Li Liang, Xian-Min Shen\",\"doi\":\"10.1109/ICMLC.2011.6016868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of bandwidth parameter is a critical factor for the performance of probability density estimation method. The advanced parameter selection methods, such as the bootstrap method, the least-squares cross-validation (LSCV) method and the biased cross-validation (BCV) method, always need the help of the brute-force search or exhaustive search to find the optimal bandwidth parameters. In this paper, we apply five particle swarm optimization (PSO) algorithms-standard PSO (SPSO), PSO with a constriction factor (PSOCF), Gaussian PSO (GPSO), Gaussian PSO with Gaussian jump (GPSOGJ) and Gaussian PSO with Cauchy jump (GPSOCJ)-to determine the optimal bandwidths. In order to experimentally validate the feasibility and effectiveness of selecting the optimal parameters by using PSO algorithms, we carry out some numerical simulations on four univariate artificial datasets: Uniform dataset, Normal dataset, Exponential dataset and Rayleigh dataset. The finally comparative results show that our strategies are well-performed and Gaussian PSO with jump methods can obtain the better estimations than other PSO algorithms.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

带宽参数的确定是影响概率密度估计方法性能的关键因素。先进的参数选择方法,如自举法、最小二乘交叉验证(LSCV)方法和有偏差交叉验证(BCV)方法,总是需要借助暴力搜索或穷举搜索来找到最优带宽参数。本文应用五种粒子群优化算法——标准粒子群优化算法(SPSO)、带收缩因子粒子群优化算法(PSOCF)、高斯粒子群优化算法(GPSO)、高斯粒子群优化算法(GPSOGJ)和高斯粒子群优化算法(GPSOCJ)确定最优带宽。为了实验验证PSO算法选择最优参数的可行性和有效性,我们在统一数据集、正常数据集、指数数据集和瑞利数据集四种单变量人工数据集上进行了数值模拟。最后的对比结果表明,我们的策略具有良好的性能,与其他粒子群算法相比,采用跳跃方法的高斯粒子群算法可以获得更好的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying particle swarm optimization to determine the bandwidth parameter in probability density estimation
The determination of bandwidth parameter is a critical factor for the performance of probability density estimation method. The advanced parameter selection methods, such as the bootstrap method, the least-squares cross-validation (LSCV) method and the biased cross-validation (BCV) method, always need the help of the brute-force search or exhaustive search to find the optimal bandwidth parameters. In this paper, we apply five particle swarm optimization (PSO) algorithms-standard PSO (SPSO), PSO with a constriction factor (PSOCF), Gaussian PSO (GPSO), Gaussian PSO with Gaussian jump (GPSOGJ) and Gaussian PSO with Cauchy jump (GPSOCJ)-to determine the optimal bandwidths. In order to experimentally validate the feasibility and effectiveness of selecting the optimal parameters by using PSO algorithms, we carry out some numerical simulations on four univariate artificial datasets: Uniform dataset, Normal dataset, Exponential dataset and Rayleigh dataset. The finally comparative results show that our strategies are well-performed and Gaussian PSO with jump methods can obtain the better estimations than other PSO algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信