超分辨率噪声特征值的严格阈值

K. Lee, J. Herper
{"title":"超分辨率噪声特征值的严格阈值","authors":"K. Lee, J. Herper","doi":"10.1109/APS.1986.1149593","DOIUrl":null,"url":null,"abstract":"INTRODUCTION Identification of principal and noise eigenvalues in the eigenvalue/vector decomposition of a covariance matrix is an essential part of superresolution techniques such as MUSIC and PEGS (1). Target counting is decided directly by the number of principal eigenvalues chosen from the total set of eigenvalues. The resultant resolution pattern can be affected by the appearance of spurious peaks or the disappearance of real peaks if the eigenvalues are not properly identified. Curvefit methods customarily adopted to discriminate principal from noise eigenvalues fail when targets are so close that there is no significant slope change in the transition from noise eigenvalues to the least principal eigenvalue. Once the boundary between principal and noise eigenvalues is blurred, a superresolution technique based on the eigenvalue/vector decomposition of a covariance matrix loses its resolution capability.","PeriodicalId":399329,"journal":{"name":"1986 Antennas and Propagation Society International Symposium","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A tight threshold for noise eigenvalues in superresolution\",\"authors\":\"K. Lee, J. Herper\",\"doi\":\"10.1109/APS.1986.1149593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION Identification of principal and noise eigenvalues in the eigenvalue/vector decomposition of a covariance matrix is an essential part of superresolution techniques such as MUSIC and PEGS (1). Target counting is decided directly by the number of principal eigenvalues chosen from the total set of eigenvalues. The resultant resolution pattern can be affected by the appearance of spurious peaks or the disappearance of real peaks if the eigenvalues are not properly identified. Curvefit methods customarily adopted to discriminate principal from noise eigenvalues fail when targets are so close that there is no significant slope change in the transition from noise eigenvalues to the least principal eigenvalue. Once the boundary between principal and noise eigenvalues is blurred, a superresolution technique based on the eigenvalue/vector decomposition of a covariance matrix loses its resolution capability.\",\"PeriodicalId\":399329,\"journal\":{\"name\":\"1986 Antennas and Propagation Society International Symposium\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1986 Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1986.1149593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1986 Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1986.1149593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在协方差矩阵的特征值/向量分解中识别主特征值和噪声特征值是超分辨率技术(如MUSIC和peg)的重要组成部分(1)。目标计数直接由从总特征值集中选择的主特征值的数量决定。如果特征值不能正确识别,则产生的分辨率模式可能受到假峰出现或实峰消失的影响。当目标距离较近时,从噪声特征值到最小主特征值的过渡没有明显的斜率变化时,通常采用的曲线拟合方法无法区分主特征值和噪声特征值。一旦主特征值与噪声特征值之间的边界模糊,基于协方差矩阵特征值/向量分解的超分辨技术就会失去分辨能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tight threshold for noise eigenvalues in superresolution
INTRODUCTION Identification of principal and noise eigenvalues in the eigenvalue/vector decomposition of a covariance matrix is an essential part of superresolution techniques such as MUSIC and PEGS (1). Target counting is decided directly by the number of principal eigenvalues chosen from the total set of eigenvalues. The resultant resolution pattern can be affected by the appearance of spurious peaks or the disappearance of real peaks if the eigenvalues are not properly identified. Curvefit methods customarily adopted to discriminate principal from noise eigenvalues fail when targets are so close that there is no significant slope change in the transition from noise eigenvalues to the least principal eigenvalue. Once the boundary between principal and noise eigenvalues is blurred, a superresolution technique based on the eigenvalue/vector decomposition of a covariance matrix loses its resolution capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信