基于Logistic回归算法和支持向量机算法的钓鱼网站准确率预测方法

Vallepu Rambabu, K. Malathi, R. Mahaveerakannan
{"title":"基于Logistic回归算法和支持向量机算法的钓鱼网站准确率预测方法","authors":"Vallepu Rambabu, K. Malathi, R. Mahaveerakannan","doi":"10.1109/ICECA55336.2022.10009351","DOIUrl":null,"url":null,"abstract":"To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Innovative Method to Predict the Accuracy of Phishing Websites by Comparing Logistic Regression Algorithm with Support Vector Machine Algorithm\",\"authors\":\"Vallepu Rambabu, K. Malathi, R. Mahaveerakannan\",\"doi\":\"10.1109/ICECA55336.2022.10009351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.\",\"PeriodicalId\":356949,\"journal\":{\"name\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Electronics, Communication and Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA55336.2022.10009351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

比较新型LR和支持向量机技术对钓鱼网站的精度估计。材料与方法:将SVM方法的监督学习算法(N = 20)与Logistic回归算法的监督学习算法(N = 20)进行比较。为了达到较高的精度,G功率值设置为0.8。框架中使用了机器学习。与SVM方法相比,LR具有更高的精度(92.00%)。(90.26%)。置信值为95%,进行公正的t检验(p =.375),表明重要性得分无统计学意义(p>0.05)。结论:LR方法似乎比支持向量机技术更准确地检测钓鱼网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Innovative Method to Predict the Accuracy of Phishing Websites by Comparing Logistic Regression Algorithm with Support Vector Machine Algorithm
To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信