M. Hildebrandt, T. Neubert, A. Makrushin, J. Dittmann
{"title":"基准人脸变形伪造检测:stirtrace在不同处理步骤冲击仿真中的应用","authors":"M. Hildebrandt, T. Neubert, A. Makrushin, J. Dittmann","doi":"10.1109/IWBF.2017.7935087","DOIUrl":null,"url":null,"abstract":"We analyze StirTrace towards benchmarking face morphing forgeries and extending it by additional scaling functions for the face biometrics scenario. We benchmark a Benford's law based multi-compression-anomaly detection approach and acceptance rates of morphs for a face matcher to determine the impact of the processing on the quality of the forgeries. We use 2 different approaches for automatically creating 3940 images of morphed faces. Based on this data set, 86614 images are created using StirTrace. A manual selection of 183 high quality morphs is used to derive tendencies based on the subjective forgery quality. Our results show that the anomaly detection seems to be able to detect anomalies in the morphing regions, the multi-compression-anomaly detection performance after the processing can be differentiated into good (e.g. cropping), partially critical (e.g. rotation) and critical results (e.g. additive noise). The influence of the processing on the biometric matcher is marginal.","PeriodicalId":111316,"journal":{"name":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Benchmarking face morphing forgery detection: Application of stirtrace for impact simulation of different processing steps\",\"authors\":\"M. Hildebrandt, T. Neubert, A. Makrushin, J. Dittmann\",\"doi\":\"10.1109/IWBF.2017.7935087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze StirTrace towards benchmarking face morphing forgeries and extending it by additional scaling functions for the face biometrics scenario. We benchmark a Benford's law based multi-compression-anomaly detection approach and acceptance rates of morphs for a face matcher to determine the impact of the processing on the quality of the forgeries. We use 2 different approaches for automatically creating 3940 images of morphed faces. Based on this data set, 86614 images are created using StirTrace. A manual selection of 183 high quality morphs is used to derive tendencies based on the subjective forgery quality. Our results show that the anomaly detection seems to be able to detect anomalies in the morphing regions, the multi-compression-anomaly detection performance after the processing can be differentiated into good (e.g. cropping), partially critical (e.g. rotation) and critical results (e.g. additive noise). The influence of the processing on the biometric matcher is marginal.\",\"PeriodicalId\":111316,\"journal\":{\"name\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2017.7935087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2017.7935087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Benchmarking face morphing forgery detection: Application of stirtrace for impact simulation of different processing steps
We analyze StirTrace towards benchmarking face morphing forgeries and extending it by additional scaling functions for the face biometrics scenario. We benchmark a Benford's law based multi-compression-anomaly detection approach and acceptance rates of morphs for a face matcher to determine the impact of the processing on the quality of the forgeries. We use 2 different approaches for automatically creating 3940 images of morphed faces. Based on this data set, 86614 images are created using StirTrace. A manual selection of 183 high quality morphs is used to derive tendencies based on the subjective forgery quality. Our results show that the anomaly detection seems to be able to detect anomalies in the morphing regions, the multi-compression-anomaly detection performance after the processing can be differentiated into good (e.g. cropping), partially critical (e.g. rotation) and critical results (e.g. additive noise). The influence of the processing on the biometric matcher is marginal.