一种新的混合粒子群算法用于支持向量回归的特征选择和核优化

Jiansheng Wu, Enhong Chen
{"title":"一种新的混合粒子群算法用于支持向量回归的特征选择和核优化","authors":"Jiansheng Wu, Enhong Chen","doi":"10.1109/CIS.2010.47","DOIUrl":null,"url":null,"abstract":"This study proposed a novel HPSO-SVR model that hybridized the particle swarm optimization (PSO) and support vector regression (SVR) to improve the regression accuracy based on the type of kernel function and kernel parameter value optimization with a small and appropriate feature subset, which is then applied to forecast the monthly rainfall. This optimization mechanism combined the discrete PSO with the continuous-valued PSO to simultaneously optimize the input feature subset selection, the type of kernel function and the kernel parameter setting of SVR. The proposed model was tested at monthly rainfall forecasting in Guangxi, China. The results showed that the new HPSO-SVR model outperforms the previous models. Specifically, the new HPSO-SVR model can correctly select the discriminating input features, also successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in rainfall forecasting.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Novel Hybrid Particle Swarm Optimization for Feature Selection and Kernel Optimization in Support Vector Regression\",\"authors\":\"Jiansheng Wu, Enhong Chen\",\"doi\":\"10.1109/CIS.2010.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed a novel HPSO-SVR model that hybridized the particle swarm optimization (PSO) and support vector regression (SVR) to improve the regression accuracy based on the type of kernel function and kernel parameter value optimization with a small and appropriate feature subset, which is then applied to forecast the monthly rainfall. This optimization mechanism combined the discrete PSO with the continuous-valued PSO to simultaneously optimize the input feature subset selection, the type of kernel function and the kernel parameter setting of SVR. The proposed model was tested at monthly rainfall forecasting in Guangxi, China. The results showed that the new HPSO-SVR model outperforms the previous models. Specifically, the new HPSO-SVR model can correctly select the discriminating input features, also successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in rainfall forecasting.\",\"PeriodicalId\":420515,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Security\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2010.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于核函数类型和核参数值优化的新型HPSO-SVR模型,该模型将粒子群优化(PSO)和支持向量回归(SVR)相结合,利用小而合适的特征子集来提高回归精度,并将其应用于月降雨量预测。该优化机制将离散粒子群算法与连续值粒子群算法相结合,同时对支持向量回归算法的输入特征子集选择、核函数类型和核参数设置进行优化。该模型在广西的月降雨量预报中进行了验证。结果表明,新的HPSO-SVR模型优于之前的模型。具体而言,该模型在降雨预报中能够正确选择判别输入特征,并成功识别出核函数的最优类型和预测误差最小的SVR参数的所有最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Hybrid Particle Swarm Optimization for Feature Selection and Kernel Optimization in Support Vector Regression
This study proposed a novel HPSO-SVR model that hybridized the particle swarm optimization (PSO) and support vector regression (SVR) to improve the regression accuracy based on the type of kernel function and kernel parameter value optimization with a small and appropriate feature subset, which is then applied to forecast the monthly rainfall. This optimization mechanism combined the discrete PSO with the continuous-valued PSO to simultaneously optimize the input feature subset selection, the type of kernel function and the kernel parameter setting of SVR. The proposed model was tested at monthly rainfall forecasting in Guangxi, China. The results showed that the new HPSO-SVR model outperforms the previous models. Specifically, the new HPSO-SVR model can correctly select the discriminating input features, also successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in rainfall forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信