J. Duarte, S. Khandelwal, A. Khan, A. Sachid, Yen-Kai Lin, Huan-Lin Chang, S. Salahuddin, C. Hu
{"title":"负电容finfet的紧凑模型:集中和分布电荷模型","authors":"J. Duarte, S. Khandelwal, A. Khan, A. Sachid, Yen-Kai Lin, Huan-Lin Chang, S. Salahuddin, C. Hu","doi":"10.1109/IEDM.2016.7838514","DOIUrl":null,"url":null,"abstract":"This work presents insights into the device physics and behaviors of ferroelectric based negative capacitance FinFETs (NC-FinFETs) by proposing lumped and distributed compact models for its simulation. NC-FinFET may have a floating metal between ferroelectric (FE) and the dielectric layers and the lumped charge model represents such a device. For a NC-FinFET without a floating metal, the distributed charge model should be used and at each point in the channel the ferroelectric layer will impact the local channel charge. This distributed effect has important implications on device characteristics as shown in this paper. The proposed compact models have been implemented in circuit simulators for exploring circuits based on NC-FinFET technology.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Compact models of negative-capacitance FinFETs: Lumped and distributed charge models\",\"authors\":\"J. Duarte, S. Khandelwal, A. Khan, A. Sachid, Yen-Kai Lin, Huan-Lin Chang, S. Salahuddin, C. Hu\",\"doi\":\"10.1109/IEDM.2016.7838514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents insights into the device physics and behaviors of ferroelectric based negative capacitance FinFETs (NC-FinFETs) by proposing lumped and distributed compact models for its simulation. NC-FinFET may have a floating metal between ferroelectric (FE) and the dielectric layers and the lumped charge model represents such a device. For a NC-FinFET without a floating metal, the distributed charge model should be used and at each point in the channel the ferroelectric layer will impact the local channel charge. This distributed effect has important implications on device characteristics as shown in this paper. The proposed compact models have been implemented in circuit simulators for exploring circuits based on NC-FinFET technology.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact models of negative-capacitance FinFETs: Lumped and distributed charge models
This work presents insights into the device physics and behaviors of ferroelectric based negative capacitance FinFETs (NC-FinFETs) by proposing lumped and distributed compact models for its simulation. NC-FinFET may have a floating metal between ferroelectric (FE) and the dielectric layers and the lumped charge model represents such a device. For a NC-FinFET without a floating metal, the distributed charge model should be used and at each point in the channel the ferroelectric layer will impact the local channel charge. This distributed effect has important implications on device characteristics as shown in this paper. The proposed compact models have been implemented in circuit simulators for exploring circuits based on NC-FinFET technology.