高维不平衡数据的高效表示学习

Bilal Mirza, Stanley Kok, Zhiping Lin, Yong Kiang Yeo, Xiaoping Lai, Jiuwen Cao, Jose Sepulveda
{"title":"高维不平衡数据的高效表示学习","authors":"Bilal Mirza, Stanley Kok, Zhiping Lin, Yong Kiang Yeo, Xiaoping Lai, Jiuwen Cao, Jose Sepulveda","doi":"10.1109/ICDSP.2016.7868610","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient representation learning for high-dimensional imbalance data\",\"authors\":\"Bilal Mirza, Stanley Kok, Zhiping Lin, Yong Kiang Yeo, Xiaoping Lai, Jiuwen Cao, Jose Sepulveda\",\"doi\":\"10.1109/ICDSP.2016.7868610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.\",\"PeriodicalId\":206199,\"journal\":{\"name\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2016.7868610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对类不平衡的高维数据集,提出了一种多层加权极限学习机(ML-WELM)。最近提出的单隐藏层WELM方法有效地解决了类不平衡问题,但它可能无法捕获图像数据集中的高级抽象。ML-WELM使用多个隐藏层为大图像数据提供高效的表示学习,同时使用成本敏感加权解决类不平衡问题。加权ELM自编码器(WELM-AE)也被提出用于逐层学习ML-WELM中的类不平衡特征。我们在实验中使用了四种失衡图像数据集;ML-WELM在所有这些方面的性能都优于WELM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient representation learning for high-dimensional imbalance data
In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信