Bilal Mirza, Stanley Kok, Zhiping Lin, Yong Kiang Yeo, Xiaoping Lai, Jiuwen Cao, Jose Sepulveda
{"title":"高维不平衡数据的高效表示学习","authors":"Bilal Mirza, Stanley Kok, Zhiping Lin, Yong Kiang Yeo, Xiaoping Lai, Jiuwen Cao, Jose Sepulveda","doi":"10.1109/ICDSP.2016.7868610","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient representation learning for high-dimensional imbalance data\",\"authors\":\"Bilal Mirza, Stanley Kok, Zhiping Lin, Yong Kiang Yeo, Xiaoping Lai, Jiuwen Cao, Jose Sepulveda\",\"doi\":\"10.1109/ICDSP.2016.7868610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.\",\"PeriodicalId\":206199,\"journal\":{\"name\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2016.7868610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient representation learning for high-dimensional imbalance data
In this paper, a multi-layer weighted extreme learning machine (ML-WELM) is proposed for high-dimensional datasets with class imbalance. The recently proposed single hidden layer WELM method effectively tackles class imbalance but it may not capture high level abstractions in image datasets. ML-WELM provides efficient representation learning for big image data using multiple hidden layers and at the same time tackles the class imbalance problem using cost-sensitive weighting. Weighted ELM auto-encoder (WELM-AE) is also proposed for layer-by-layer class imbalance feature learning in ML-WELM. We used four imbalance image datasets in our experiments; ML-WELM performs better than the WELM method on all of them.