含石墨烯包裹中空颗粒填料的轻质导热聚合物纳米复合材料的中尺度计算预测

Jianjun Wang, Zhonghui Shen, Wenying Zhou, Yang Shen, C. Nan, Qing Wang, Long-Qing Chen
{"title":"含石墨烯包裹中空颗粒填料的轻质导热聚合物纳米复合材料的中尺度计算预测","authors":"Jianjun Wang, Zhonghui Shen, Wenying Zhou, Yang Shen, C. Nan, Qing Wang, Long-Qing Chen","doi":"10.18282/CMR.V7I1.111","DOIUrl":null,"url":null,"abstract":"Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscale computational prediction of lightweight, thermally conductive polymer nanocomposites containing graphene-wrapped hollow particle fillers\",\"authors\":\"Jianjun Wang, Zhonghui Shen, Wenying Zhou, Yang Shen, C. Nan, Qing Wang, Long-Qing Chen\",\"doi\":\"10.18282/CMR.V7I1.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.\",\"PeriodicalId\":331072,\"journal\":{\"name\":\"Characterization and Application of Nanomaterials\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Characterization and Application of Nanomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18282/CMR.V7I1.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18282/CMR.V7I1.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于微电子芯片的高速和高性能,散热已成为微电子芯片日益重要的问题。一种解决办法是增加相应介质的导热性。然而,在聚合物介质中加入固体导热纳米颗粒的传统方法会导致重量显著增加。在这里,我们提出了一种填充导热中空纳米颗粒的介电聚合物来减轻重量的增加。我们利用相场谱迭代摄动方法对这种介电聚合物复合材料微观结构的热传导进行了中尺度模拟,结果表明该材料在提高有效导热系数的同时实现了低密度。结果表明,用石墨烯层包裹空心纳米颗粒可以实现额外的导热性增强。这种微观结构设计的潜在中尺度机制和界面热阻的定量效应将被讨论。这项工作有望激发未来开发轻质导热聚合物纳米复合材料的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesoscale computational prediction of lightweight, thermally conductive polymer nanocomposites containing graphene-wrapped hollow particle fillers
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信