几何非线性剪切变形梁的原始和双混合有限元模型的比较研究

E. Bertóti
{"title":"几何非线性剪切变形梁的原始和双混合有限元模型的比较研究","authors":"E. Bertóti","doi":"10.24423/CAMES.299","DOIUrl":null,"url":null,"abstract":"The relationships between the system matrices of the displacement-based, a primal-mixed, a dual-mixed and a consistent primal-dual mixed finite element model for geometrically nonlinear shear-deformable beams are investigated. Employing Galerkin-type weak formulations with the lowest possible order, constant and linear, polynomial approximations, the tangent stiffness matrices and the load vectors of the elements are derived and compared to each other in their explicit forms. The main difference between the standard and the dual-mixed element can be characterized by a geometry-, material- and meshdependent constant that can serve not only as a locking indicator but also to transform the displacement-based element into a shear-locking-free dual-mixed beam element. The numerical performances of the four different elements are compared to each other through two simple model problems. The superior performance of the mixed, and especially the dual-mixed, beam elements in the nonlinear case is demonstrated, not only for the deflection, but also for the force and moment computations.","PeriodicalId":448014,"journal":{"name":"Computer Assisted Mechanics and Engineering Sciences","volume":"2092 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primal- and Dual-Mixed Finite Element Models for Geometrically Nonlinear Shear-Deformable Beams – A Comparative Study\",\"authors\":\"E. Bertóti\",\"doi\":\"10.24423/CAMES.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationships between the system matrices of the displacement-based, a primal-mixed, a dual-mixed and a consistent primal-dual mixed finite element model for geometrically nonlinear shear-deformable beams are investigated. Employing Galerkin-type weak formulations with the lowest possible order, constant and linear, polynomial approximations, the tangent stiffness matrices and the load vectors of the elements are derived and compared to each other in their explicit forms. The main difference between the standard and the dual-mixed element can be characterized by a geometry-, material- and meshdependent constant that can serve not only as a locking indicator but also to transform the displacement-based element into a shear-locking-free dual-mixed beam element. The numerical performances of the four different elements are compared to each other through two simple model problems. The superior performance of the mixed, and especially the dual-mixed, beam elements in the nonlinear case is demonstrated, not only for the deflection, but also for the force and moment computations.\",\"PeriodicalId\":448014,\"journal\":{\"name\":\"Computer Assisted Mechanics and Engineering Sciences\",\"volume\":\"2092 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Mechanics and Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/CAMES.299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Mechanics and Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/CAMES.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了几何非线性剪切变形梁的基于位移、原始混合、双重混合和一致原始-双重混合有限元模型的系统矩阵之间的关系。采用尽可能低阶、常数和线性、多项式近似的伽辽金型弱公式,导出了各单元的切向刚度矩阵和载荷矢量,并以显式形式相互比较。标准梁单元和双混合梁单元之间的主要区别可以通过几何、材料和网格相关常数来表征,该常数不仅可以作为锁定指示器,还可以将基于位移的梁单元转换为无剪切锁定的双混合梁单元。通过两个简单的模型问题,比较了四种不同单元的数值性能。在非线性情况下,混合梁单元,特别是双混合梁单元不仅在挠度计算上,而且在力和弯矩计算上都表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primal- and Dual-Mixed Finite Element Models for Geometrically Nonlinear Shear-Deformable Beams – A Comparative Study
The relationships between the system matrices of the displacement-based, a primal-mixed, a dual-mixed and a consistent primal-dual mixed finite element model for geometrically nonlinear shear-deformable beams are investigated. Employing Galerkin-type weak formulations with the lowest possible order, constant and linear, polynomial approximations, the tangent stiffness matrices and the load vectors of the elements are derived and compared to each other in their explicit forms. The main difference between the standard and the dual-mixed element can be characterized by a geometry-, material- and meshdependent constant that can serve not only as a locking indicator but also to transform the displacement-based element into a shear-locking-free dual-mixed beam element. The numerical performances of the four different elements are compared to each other through two simple model problems. The superior performance of the mixed, and especially the dual-mixed, beam elements in the nonlinear case is demonstrated, not only for the deflection, but also for the force and moment computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信