用模拟瞬态诱发电位序列检测稳态视觉诱发电位

A. Gaume, F. Vialatte, G. Dreyfus
{"title":"用模拟瞬态诱发电位序列检测稳态视觉诱发电位","authors":"A. Gaume, F. Vialatte, G. Dreyfus","doi":"10.1109/FTFC.2014.6828619","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of detecting steady-state visual evoked potentials (SSVEPs) in EEG signals by using a set of simulated trains of VEPs instead of the sine-waves basis typically used in Fourier Transform. The detection algorithm is calibrated using the subject's brain response to visual stimulation. The original contribution of the paper is that our detection method automatically takes into account all the spectral content adapted to the steady-state response in terms of harmonic localization, weights, and phase. We show that this method give better results than simple frequency analysis for SSVEP detection while requiring less features, thereby reducing the risk of overfitting the detection model.","PeriodicalId":138166,"journal":{"name":"2014 IEEE Faible Tension Faible Consommation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Detection of steady-state visual evoked potentials using simulated trains of transient evoked potentials\",\"authors\":\"A. Gaume, F. Vialatte, G. Dreyfus\",\"doi\":\"10.1109/FTFC.2014.6828619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of detecting steady-state visual evoked potentials (SSVEPs) in EEG signals by using a set of simulated trains of VEPs instead of the sine-waves basis typically used in Fourier Transform. The detection algorithm is calibrated using the subject's brain response to visual stimulation. The original contribution of the paper is that our detection method automatically takes into account all the spectral content adapted to the steady-state response in terms of harmonic localization, weights, and phase. We show that this method give better results than simple frequency analysis for SSVEP detection while requiring less features, thereby reducing the risk of overfitting the detection model.\",\"PeriodicalId\":138166,\"journal\":{\"name\":\"2014 IEEE Faible Tension Faible Consommation\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Faible Tension Faible Consommation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTFC.2014.6828619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Faible Tension Faible Consommation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTFC.2014.6828619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们通过一组模拟的视觉诱发电位序列来代替傅立叶变换中常用的正弦波基,解决了检测脑电图信号中的稳态视觉诱发电位(ssvep)的问题。检测算法是根据受试者的大脑对视觉刺激的反应来校准的。本文的原始贡献在于,我们的检测方法在谐波局域化、权值和相位方面自动考虑了适应稳态响应的所有频谱含量。我们表明,该方法在SSVEP检测中比简单的频率分析得到更好的结果,同时需要更少的特征,从而降低了检测模型过拟合的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of steady-state visual evoked potentials using simulated trains of transient evoked potentials
In this paper, we address the problem of detecting steady-state visual evoked potentials (SSVEPs) in EEG signals by using a set of simulated trains of VEPs instead of the sine-waves basis typically used in Fourier Transform. The detection algorithm is calibrated using the subject's brain response to visual stimulation. The original contribution of the paper is that our detection method automatically takes into account all the spectral content adapted to the steady-state response in terms of harmonic localization, weights, and phase. We show that this method give better results than simple frequency analysis for SSVEP detection while requiring less features, thereby reducing the risk of overfitting the detection model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信