基于立体行人检测的动态地平面估计方法

Y. Lim, M. Kang
{"title":"基于立体行人检测的动态地平面估计方法","authors":"Y. Lim, M. Kang","doi":"10.1145/3018009.3018035","DOIUrl":null,"url":null,"abstract":"Pedestrian detection requires both reliable performance and fast processing. Stereo-based pedestrian detectors meet these requirements due to a hypotheses generation processing. However, noisy depth images increase the difficulty of robustly estimating the road line in various road environments. This problem results in inaccurate candidate bounding boxes and complicates the correct classification of the bounding boxes. In this letter, we propose a dynamic ground plane estimation method to manage this problem. Our approach estimates the ground plane optimally using a posterior probability that combines a prior probability and several uncertain observations due to cluttered road environments. Our approach estimates a ground plane optimally using a posterior probability which combines a prior probability and several uncertain observations due to cluttered road environments. The experimental results demonstrate that the proposed method estimates the ground plane robustly and accurately in noisy depth images and also a stereo-based pedestrian detector using the proposed method outperforms previous state-of-the art detectors with less complexity.","PeriodicalId":189252,"journal":{"name":"Proceedings of the 2nd International Conference on Communication and Information Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stereo-based pedestrian detection using the dynamic ground plane estimation method\",\"authors\":\"Y. Lim, M. Kang\",\"doi\":\"10.1145/3018009.3018035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection requires both reliable performance and fast processing. Stereo-based pedestrian detectors meet these requirements due to a hypotheses generation processing. However, noisy depth images increase the difficulty of robustly estimating the road line in various road environments. This problem results in inaccurate candidate bounding boxes and complicates the correct classification of the bounding boxes. In this letter, we propose a dynamic ground plane estimation method to manage this problem. Our approach estimates the ground plane optimally using a posterior probability that combines a prior probability and several uncertain observations due to cluttered road environments. Our approach estimates a ground plane optimally using a posterior probability which combines a prior probability and several uncertain observations due to cluttered road environments. The experimental results demonstrate that the proposed method estimates the ground plane robustly and accurately in noisy depth images and also a stereo-based pedestrian detector using the proposed method outperforms previous state-of-the art detectors with less complexity.\",\"PeriodicalId\":189252,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018009.3018035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018009.3018035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

行人检测需要可靠的性能和快速的处理。基于立体的行人检测器通过假设生成处理来满足这些要求。然而,噪声深度图像增加了在各种道路环境下对道路线进行鲁棒估计的难度。这个问题导致候选边界框不准确,并使边界框的正确分类复杂化。在这封信中,我们提出了一种动态地平面估计方法来处理这个问题。我们的方法使用后验概率对地平面进行最佳估计,该后验概率结合了先验概率和由于道路环境混乱而产生的几个不确定观测值。我们的方法使用后验概率对地平面进行最佳估计,该后验概率结合了先验概率和由于道路环境混乱而产生的几个不确定观测值。实验结果表明,该方法在噪声深度图像中对地平面进行了鲁棒性和准确性的估计,并且使用该方法的基于立体的行人检测器比现有的检测器具有更低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereo-based pedestrian detection using the dynamic ground plane estimation method
Pedestrian detection requires both reliable performance and fast processing. Stereo-based pedestrian detectors meet these requirements due to a hypotheses generation processing. However, noisy depth images increase the difficulty of robustly estimating the road line in various road environments. This problem results in inaccurate candidate bounding boxes and complicates the correct classification of the bounding boxes. In this letter, we propose a dynamic ground plane estimation method to manage this problem. Our approach estimates the ground plane optimally using a posterior probability that combines a prior probability and several uncertain observations due to cluttered road environments. Our approach estimates a ground plane optimally using a posterior probability which combines a prior probability and several uncertain observations due to cluttered road environments. The experimental results demonstrate that the proposed method estimates the ground plane robustly and accurately in noisy depth images and also a stereo-based pedestrian detector using the proposed method outperforms previous state-of-the art detectors with less complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信