基于混合gpu的计算加速频谱计算

Jian Xiao, Xingyu Xu, Ce Yu, Jiawan Zhang, Shuinai Zhang, Li Ji, Ji-zhou Sun
{"title":"基于混合gpu的计算加速频谱计算","authors":"Jian Xiao, Xingyu Xu, Ce Yu, Jiawan Zhang, Shuinai Zhang, Li Ji, Ji-zhou Sun","doi":"10.1109/ICPP.2015.13","DOIUrl":null,"url":null,"abstract":"Spectral calculation and analysis have very important practical applications in astrophysics. The main portion of spectral calculation is to solve a large number of one-dimensional numerical integrations at each point of a large three-dimensional parameter space. However, existing widely used solutions still remain in process-level parallelism, which is not competent to tackle numerous compute-intensive small integral tasks. This paper presented a GPU-optimized approach to accelerate the numerical integration in massive spectral calculation. We also proposed a load balance strategy on hybrid multiple CPUs and GPUs architecture via share memory to maximize performance. The approach was prototyped and tested on the Astrophysical Plasma Emission Code (APEC), a commonly used spectral toolset. Comparing with the original serial version and the 24 CPU cores (2.5GHz) parallel version, our implementation on 3 Tesla C2075 GPUs achieves a speed-up of up to 300 and 22 respectively.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Spectral Calculation through Hybrid GPU-Based Computing\",\"authors\":\"Jian Xiao, Xingyu Xu, Ce Yu, Jiawan Zhang, Shuinai Zhang, Li Ji, Ji-zhou Sun\",\"doi\":\"10.1109/ICPP.2015.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral calculation and analysis have very important practical applications in astrophysics. The main portion of spectral calculation is to solve a large number of one-dimensional numerical integrations at each point of a large three-dimensional parameter space. However, existing widely used solutions still remain in process-level parallelism, which is not competent to tackle numerous compute-intensive small integral tasks. This paper presented a GPU-optimized approach to accelerate the numerical integration in massive spectral calculation. We also proposed a load balance strategy on hybrid multiple CPUs and GPUs architecture via share memory to maximize performance. The approach was prototyped and tested on the Astrophysical Plasma Emission Code (APEC), a commonly used spectral toolset. Comparing with the original serial version and the 24 CPU cores (2.5GHz) parallel version, our implementation on 3 Tesla C2075 GPUs achieves a speed-up of up to 300 and 22 respectively.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光谱的计算和分析在天体物理学中有着非常重要的实际应用。光谱计算的主要部分是在一个大的三维参数空间的每一点上求解大量的一维数值积分。然而,现有的广泛使用的解决方案仍然停留在进程级并行性上,无法胜任处理大量计算密集型的小型积分任务。提出了一种基于gpu优化的大规模光谱计算数值积分加速方法。我们还提出了一种基于共享内存的混合多cpu和gpu架构的负载平衡策略,以实现性能最大化。该方法在天体物理等离子体发射代码(APEC)上进行了原型和测试,这是一种常用的光谱工具集。与原始串行版本和24个CPU核(2.5GHz)并行版本相比,我们在3个Tesla C2075 gpu上的实现分别实现了高达300和22的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Spectral Calculation through Hybrid GPU-Based Computing
Spectral calculation and analysis have very important practical applications in astrophysics. The main portion of spectral calculation is to solve a large number of one-dimensional numerical integrations at each point of a large three-dimensional parameter space. However, existing widely used solutions still remain in process-level parallelism, which is not competent to tackle numerous compute-intensive small integral tasks. This paper presented a GPU-optimized approach to accelerate the numerical integration in massive spectral calculation. We also proposed a load balance strategy on hybrid multiple CPUs and GPUs architecture via share memory to maximize performance. The approach was prototyped and tested on the Astrophysical Plasma Emission Code (APEC), a commonly used spectral toolset. Comparing with the original serial version and the 24 CPU cores (2.5GHz) parallel version, our implementation on 3 Tesla C2075 GPUs achieves a speed-up of up to 300 and 22 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信