{"title":"用于图像子带量化的Z、E/sub 8/和Leech格的比较","authors":"Zheng Gao, Feng Chen, B. Belzer, J. Villasenor","doi":"10.1109/DCC.1995.515521","DOIUrl":null,"url":null,"abstract":"Lattice vector quantization schemes offer high coding efficiency without the burden associated with generating and searching a codebook. The distortion associated with a given lattice is often expressed in terms of the G number, which is a measure of the mean square error per dimension generated by quantization of a uniform source. Subband image coefficients, however, are best modeled by a generalized Gaussian, leading to distortion characteristics that are quite different from those encountered for uniform, Laplacian, or Gaussian sources. We present here the distortion associated with Z, E/sub 8/, and Leech lattice quantization for coding of generalized Gaussian sources, and show that for low bit rates the Z lattice offers both the best performance and the lowest implementational complexity.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A comparison of the Z, E/sub 8/ and Leech lattices for image subband quantization\",\"authors\":\"Zheng Gao, Feng Chen, B. Belzer, J. Villasenor\",\"doi\":\"10.1109/DCC.1995.515521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lattice vector quantization schemes offer high coding efficiency without the burden associated with generating and searching a codebook. The distortion associated with a given lattice is often expressed in terms of the G number, which is a measure of the mean square error per dimension generated by quantization of a uniform source. Subband image coefficients, however, are best modeled by a generalized Gaussian, leading to distortion characteristics that are quite different from those encountered for uniform, Laplacian, or Gaussian sources. We present here the distortion associated with Z, E/sub 8/, and Leech lattice quantization for coding of generalized Gaussian sources, and show that for low bit rates the Z lattice offers both the best performance and the lowest implementational complexity.\",\"PeriodicalId\":107017,\"journal\":{\"name\":\"Proceedings DCC '95 Data Compression Conference\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '95 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1995.515521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of the Z, E/sub 8/ and Leech lattices for image subband quantization
Lattice vector quantization schemes offer high coding efficiency without the burden associated with generating and searching a codebook. The distortion associated with a given lattice is often expressed in terms of the G number, which is a measure of the mean square error per dimension generated by quantization of a uniform source. Subband image coefficients, however, are best modeled by a generalized Gaussian, leading to distortion characteristics that are quite different from those encountered for uniform, Laplacian, or Gaussian sources. We present here the distortion associated with Z, E/sub 8/, and Leech lattice quantization for coding of generalized Gaussian sources, and show that for low bit rates the Z lattice offers both the best performance and the lowest implementational complexity.