自我生存:一个开源软件包,用于回归,反事实估计,评估和表型与审查时间到事件的数据

Chirag Nagpal, Willa Potosnak, A. Dubrawski
{"title":"自我生存:一个开源软件包,用于回归,反事实估计,评估和表型与审查时间到事件的数据","authors":"Chirag Nagpal, Willa Potosnak, A. Dubrawski","doi":"10.48550/arXiv.2204.07276","DOIUrl":null,"url":null,"abstract":"Applications of machine learning in healthcare often require working with time-to-event prediction tasks including prognostication of an adverse event, re-hospitalization or death. Such outcomes are typically subject to censoring due to loss of follow up. Standard machine learning methods cannot be applied in a straightforward manner to datasets with censored outcomes. In this paper, we present auton-survival, an open-source repository of tools to streamline working with censored time-to-event or survival data. auton-survival includes tools for survival regression, adjustment in the presence of domain shift, counterfactual estimation, phenotyping for risk stratification, evaluation, as well as estimation of treatment effects. Through real world case studies employing a large subset of the SEER oncology incidence data, we demonstrate the ability of auton-survival to rapidly support data scientists in answering complex health and epidemiological questions.","PeriodicalId":231229,"journal":{"name":"Machine Learning in Health Care","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data\",\"authors\":\"Chirag Nagpal, Willa Potosnak, A. Dubrawski\",\"doi\":\"10.48550/arXiv.2204.07276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications of machine learning in healthcare often require working with time-to-event prediction tasks including prognostication of an adverse event, re-hospitalization or death. Such outcomes are typically subject to censoring due to loss of follow up. Standard machine learning methods cannot be applied in a straightforward manner to datasets with censored outcomes. In this paper, we present auton-survival, an open-source repository of tools to streamline working with censored time-to-event or survival data. auton-survival includes tools for survival regression, adjustment in the presence of domain shift, counterfactual estimation, phenotyping for risk stratification, evaluation, as well as estimation of treatment effects. Through real world case studies employing a large subset of the SEER oncology incidence data, we demonstrate the ability of auton-survival to rapidly support data scientists in answering complex health and epidemiological questions.\",\"PeriodicalId\":231229,\"journal\":{\"name\":\"Machine Learning in Health Care\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning in Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.07276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning in Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.07276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

机器学习在医疗保健中的应用通常需要处理事件时间预测任务,包括不良事件、再次住院或死亡的预测。由于缺乏随访,这些结果通常会受到审查。标准的机器学习方法不能以一种直接的方式应用于具有审查结果的数据集。在本文中,我们提出了自动生存,这是一个开源的工具存储库,用于简化处理审查的时间到事件或生存数据。自我生存包括生存回归、领域转移时的调整、反事实估计、风险分层的表型、评估以及治疗效果估计等工具。通过使用大量SEER肿瘤发病率数据的现实世界案例研究,我们展示了自主生存的能力,可以快速支持数据科学家回答复杂的健康和流行病学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data
Applications of machine learning in healthcare often require working with time-to-event prediction tasks including prognostication of an adverse event, re-hospitalization or death. Such outcomes are typically subject to censoring due to loss of follow up. Standard machine learning methods cannot be applied in a straightforward manner to datasets with censored outcomes. In this paper, we present auton-survival, an open-source repository of tools to streamline working with censored time-to-event or survival data. auton-survival includes tools for survival regression, adjustment in the presence of domain shift, counterfactual estimation, phenotyping for risk stratification, evaluation, as well as estimation of treatment effects. Through real world case studies employing a large subset of the SEER oncology incidence data, we demonstrate the ability of auton-survival to rapidly support data scientists in answering complex health and epidemiological questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信