模式分类中有监督与无监督学习算法的比较

R. Sathya, Jyoti Nivas, Annamma Abraham.
{"title":"模式分类中有监督与无监督学习算法的比较","authors":"R. Sathya, Jyoti Nivas, Annamma Abraham.","doi":"10.14569/IJARAI.2013.020206","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative account of unsupervised and supervised learning models and their pattern classification evaluations as applied to the higher education scenario. Classification plays a vital role in machine based learning algorithms and in the present study, we found that, though the error back-propagation learning algorithm as provided by supervised learning model is very efficient for a number of non-linear real-time problems, KSOM of unsupervised learning model, offers efficient solution and classification in the present study.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"351","resultStr":"{\"title\":\"Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification\",\"authors\":\"R. Sathya, Jyoti Nivas, Annamma Abraham.\",\"doi\":\"10.14569/IJARAI.2013.020206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative account of unsupervised and supervised learning models and their pattern classification evaluations as applied to the higher education scenario. Classification plays a vital role in machine based learning algorithms and in the present study, we found that, though the error back-propagation learning algorithm as provided by supervised learning model is very efficient for a number of non-linear real-time problems, KSOM of unsupervised learning model, offers efficient solution and classification in the present study.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"351\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2013.020206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2013.020206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 351

摘要

本文对高等教育场景下的无监督学习和有监督学习模型及其模式分类评价进行了比较分析。分类在机器学习算法中起着至关重要的作用,在本研究中,我们发现,虽然有监督学习模型提供的误差反向传播学习算法对于许多非线性实时问题是非常有效的,但无监督学习模型的KSOM在本研究中提供了有效的求解和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Supervised and Unsupervised Learning Algorithms for Pattern Classification
This paper presents a comparative account of unsupervised and supervised learning models and their pattern classification evaluations as applied to the higher education scenario. Classification plays a vital role in machine based learning algorithms and in the present study, we found that, though the error back-propagation learning algorithm as provided by supervised learning model is very efficient for a number of non-linear real-time problems, KSOM of unsupervised learning model, offers efficient solution and classification in the present study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信