{"title":"基于机器学习的超声图像处理用于颈动脉内膜-中膜厚度的全自动评估","authors":"R. Menchón-Lara, J. Sancho-Gómez","doi":"10.1109/CBMI.2014.6849839","DOIUrl":null,"url":null,"abstract":"Atherosclerosis is responsible for a large proportion of cardiovascular diseases (CVD), which are the leading cause of death in the world. The atherosclerotic process, mainly affecting the medium- and large-size arteries, is a degenerative condition that causes thickening and the reduction of elasticity in the blood vessels. The Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) is a reliable early indicator of atherosclerosis. Usually, it is manually measured by marking pairs of points on a B-mode ultrasound scan image of the CCA. This paper proposes an automatic image segmentation procedure for the measurement of the IMT, avoiding the user dependence and the inter-rater variability. In particular, Radial Basis Function (RBF) Networks are designed and trained by means of the Optimally Pruned-Extreme Learning Machine (OP-ELM) algorithm to classify pixels from a given ultrasound image, allowing the extraction of IMT boundaries. The suggested approach has been validated on a set of 25 ultrasound images by comparing the automatic segmentations with manual tracings.","PeriodicalId":103056,"journal":{"name":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ultrasound image processing based on machine learning for the fully automatic evaluation of the Carotid Intima-Media Thickness\",\"authors\":\"R. Menchón-Lara, J. Sancho-Gómez\",\"doi\":\"10.1109/CBMI.2014.6849839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atherosclerosis is responsible for a large proportion of cardiovascular diseases (CVD), which are the leading cause of death in the world. The atherosclerotic process, mainly affecting the medium- and large-size arteries, is a degenerative condition that causes thickening and the reduction of elasticity in the blood vessels. The Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) is a reliable early indicator of atherosclerosis. Usually, it is manually measured by marking pairs of points on a B-mode ultrasound scan image of the CCA. This paper proposes an automatic image segmentation procedure for the measurement of the IMT, avoiding the user dependence and the inter-rater variability. In particular, Radial Basis Function (RBF) Networks are designed and trained by means of the Optimally Pruned-Extreme Learning Machine (OP-ELM) algorithm to classify pixels from a given ultrasound image, allowing the extraction of IMT boundaries. The suggested approach has been validated on a set of 25 ultrasound images by comparing the automatic segmentations with manual tracings.\",\"PeriodicalId\":103056,\"journal\":{\"name\":\"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2014.6849839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 12th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2014.6849839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrasound image processing based on machine learning for the fully automatic evaluation of the Carotid Intima-Media Thickness
Atherosclerosis is responsible for a large proportion of cardiovascular diseases (CVD), which are the leading cause of death in the world. The atherosclerotic process, mainly affecting the medium- and large-size arteries, is a degenerative condition that causes thickening and the reduction of elasticity in the blood vessels. The Intima-Media Thickness (IMT) of the Common Carotid Artery (CCA) is a reliable early indicator of atherosclerosis. Usually, it is manually measured by marking pairs of points on a B-mode ultrasound scan image of the CCA. This paper proposes an automatic image segmentation procedure for the measurement of the IMT, avoiding the user dependence and the inter-rater variability. In particular, Radial Basis Function (RBF) Networks are designed and trained by means of the Optimally Pruned-Extreme Learning Machine (OP-ELM) algorithm to classify pixels from a given ultrasound image, allowing the extraction of IMT boundaries. The suggested approach has been validated on a set of 25 ultrasound images by comparing the automatic segmentations with manual tracings.