基于聚类和网络约简的大规模智能电网概率最优潮流分析

Yi Liang, Deming Chen
{"title":"基于聚类和网络约简的大规模智能电网概率最优潮流分析","authors":"Yi Liang, Deming Chen","doi":"10.1145/2593069.2593106","DOIUrl":null,"url":null,"abstract":"The smart electric grid in the United States is one of the largest and most complex cyber-physical systems (CPS) in the world and contains considerable uncertainties. Probabilistic optimal power flow (OPF) analysis is required to accomplish the electrical and economic operational goals. In this paper, we propose a novel algorithm to accelerate the computation of probabilistic OPF for large-scale smart grids through network reduction (NR). Cumulant-based method and Gram-Charlier expansion theory are used to efficiently obtain the statistics of system states. We develop a more accurate linear mapping method to compute the unknown cumulants. Our method speeds up the computation by up to 4.57X and can improve around 30% accuracy when Hessian matrix is ill-conditioned compared to the previous approach.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ClusRed: Clustering and network reduction based probabilistic optimal power flow analysis for large-scale smart grids\",\"authors\":\"Yi Liang, Deming Chen\",\"doi\":\"10.1145/2593069.2593106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart electric grid in the United States is one of the largest and most complex cyber-physical systems (CPS) in the world and contains considerable uncertainties. Probabilistic optimal power flow (OPF) analysis is required to accomplish the electrical and economic operational goals. In this paper, we propose a novel algorithm to accelerate the computation of probabilistic OPF for large-scale smart grids through network reduction (NR). Cumulant-based method and Gram-Charlier expansion theory are used to efficiently obtain the statistics of system states. We develop a more accurate linear mapping method to compute the unknown cumulants. Our method speeds up the computation by up to 4.57X and can improve around 30% accuracy when Hessian matrix is ill-conditioned compared to the previous approach.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

美国的智能电网是世界上最大、最复杂的网络物理系统(CPS)之一,包含相当大的不确定性。概率最优潮流(OPF)分析是实现电力和经济运行目标所必需的。本文提出了一种通过网络约简(NR)加速大规模智能电网概率OPF计算的新算法。利用基于累积量的方法和Gram-Charlier展开理论有效地获得了系统状态的统计量。我们提出了一种更精确的线性映射方法来计算未知累积量。与之前的方法相比,我们的方法将计算速度提高了4.57倍,当Hessian矩阵是病态的时候,我们的方法可以提高大约30%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ClusRed: Clustering and network reduction based probabilistic optimal power flow analysis for large-scale smart grids
The smart electric grid in the United States is one of the largest and most complex cyber-physical systems (CPS) in the world and contains considerable uncertainties. Probabilistic optimal power flow (OPF) analysis is required to accomplish the electrical and economic operational goals. In this paper, we propose a novel algorithm to accelerate the computation of probabilistic OPF for large-scale smart grids through network reduction (NR). Cumulant-based method and Gram-Charlier expansion theory are used to efficiently obtain the statistics of system states. We develop a more accurate linear mapping method to compute the unknown cumulants. Our method speeds up the computation by up to 4.57X and can improve around 30% accuracy when Hessian matrix is ill-conditioned compared to the previous approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信