基于Gabor特征的纹理神经网络分割

A. G. Ramakrishnan, S. Raja, H. Ram
{"title":"基于Gabor特征的纹理神经网络分割","authors":"A. G. Ramakrishnan, S. Raja, H. Ram","doi":"10.1109/NNSP.2002.1030048","DOIUrl":null,"url":null,"abstract":"The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptron (MLP) architecture. The classification results obtained show an improvement over those obtained by K-means clustering and maximum likelihood approaches.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Neural network-based segmentation of textures using Gabor features\",\"authors\":\"A. G. Ramakrishnan, S. Raja, H. Ram\",\"doi\":\"10.1109/NNSP.2002.1030048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptron (MLP) architecture. The classification results obtained show an improvement over those obtained by K-means clustering and maximum likelihood approaches.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

Gabor滤波器对纹理分割的有效性是众所周知的。本文提出了一种基于Gabor特征的神经网络(NN)纹理识别方案。这些特征是由Gabor余弦和正弦滤波器导出的。通过实验,我们证明了基于神经网络的分类器使用Gabor特征在受控环境中识别纹理的有效性。用于纹理识别的神经网络基于多层感知器(MLP)结构。得到的分类结果比K-means聚类和最大似然方法得到的分类结果有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network-based segmentation of textures using Gabor features
The effectiveness of Gabor filters for texture segmentation is well known. In this paper, we propose a texture identification scheme, based on a neural network (NN) using Gabor features. The features are derived from both the Gabor cosine and sine filters. Through experiments, we demonstrate the effectiveness of a NN based classifier using Gabor features for identifying textures in a controlled environment. The neural network used for texture identification is based on the multilayer perceptron (MLP) architecture. The classification results obtained show an improvement over those obtained by K-means clustering and maximum likelihood approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信