使用元胞自动机加固加密的患者姓名以抵御加密攻击

R. Schnell, C. Borgs
{"title":"使用元胞自动机加固加密的患者姓名以抵御加密攻击","authors":"R. Schnell, C. Borgs","doi":"10.1109/ICDMW.2018.00082","DOIUrl":null,"url":null,"abstract":"Linking information across different databases enables new research in the medical sciences. Recent EU privacy regulations recommend encrypting personal identifiers used for linking. In this contribution, a new method for hardening such a privacy-preserving record linkage technique (PPRL) against attacks is presented. The new hardening method prevents re-identifications and cryptographic attacks while still delivering acceptable linkage quality. Using real-world mortality data, we compare clear-text and several current PPRL methods with our newly proposed method. While all PPRL methods will have to balance security and quality, the use of a cellular automata transformation to protect against attacks will decrease the linkage quality only slightly, while preventing all currently known methods of decrypting Bloom filter-based private linkage keys.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hardening Encrypted Patient Names Against Cryptographic Attacks Using Cellular Automata\",\"authors\":\"R. Schnell, C. Borgs\",\"doi\":\"10.1109/ICDMW.2018.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linking information across different databases enables new research in the medical sciences. Recent EU privacy regulations recommend encrypting personal identifiers used for linking. In this contribution, a new method for hardening such a privacy-preserving record linkage technique (PPRL) against attacks is presented. The new hardening method prevents re-identifications and cryptographic attacks while still delivering acceptable linkage quality. Using real-world mortality data, we compare clear-text and several current PPRL methods with our newly proposed method. While all PPRL methods will have to balance security and quality, the use of a cellular automata transformation to protect against attacks will decrease the linkage quality only slightly, while preventing all currently known methods of decrypting Bloom filter-based private linkage keys.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

将不同数据库之间的信息连接起来,可以在医学科学中进行新的研究。最近的欧盟隐私法规建议对用于链接的个人标识符进行加密。在这篇贡献中,提出了一种新的方法来加强这种保护隐私的记录链接技术(PPRL)免受攻击。新的强化方法可以防止重新识别和加密攻击,同时仍然提供可接受的链接质量。使用真实世界的死亡率数据,我们比较了明文和几种当前的PPRL方法与我们新提出的方法。虽然所有PPRL方法都必须平衡安全性和质量,但使用元胞自动机转换来防止攻击只会略微降低链接质量,同时阻止所有目前已知的解密基于Bloom过滤器的私有链接密钥的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardening Encrypted Patient Names Against Cryptographic Attacks Using Cellular Automata
Linking information across different databases enables new research in the medical sciences. Recent EU privacy regulations recommend encrypting personal identifiers used for linking. In this contribution, a new method for hardening such a privacy-preserving record linkage technique (PPRL) against attacks is presented. The new hardening method prevents re-identifications and cryptographic attacks while still delivering acceptable linkage quality. Using real-world mortality data, we compare clear-text and several current PPRL methods with our newly proposed method. While all PPRL methods will have to balance security and quality, the use of a cellular automata transformation to protect against attacks will decrease the linkage quality only slightly, while preventing all currently known methods of decrypting Bloom filter-based private linkage keys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信