铁基二、三元火山灰补强胶凝材料工程性能的实验研究

{"title":"铁基二、三元火山灰补强胶凝材料工程性能的实验研究","authors":"","doi":"10.47485/2832-9384.1024","DOIUrl":null,"url":null,"abstract":"The characteristic global warming potential of ordinary Portland cement (OPC) makes it a huge challenge for researchers to weigh its enormous use with potentially feasible engineering properties versus the environmental impacts. The formulation of sustainable, economical, and greener supplementary cementitious materials (SCMs) is an ongoing phenomenon, attracting the large-scale attention of industry/ academia. The formulation of ferrock by David Stone with low embodied energy, lower consumption of natural resources and minimal global warming potential has paved the way for the use of novel material comprising iron powder, pozzolans (pulverised fly ash (PFA) and metakaolin (MK) and lime exhibiting at par performance with OPC. However, a gap has been identified in its formulation, raising a further research question on how it will perform if PFA and MK are replaced by ground granulated blast furnace slag (GGBS) or other pozzolans like silica fume (SF) etc., with different mix ratios. Therefore, an endeavour has been made in this study to identify the engineering properties with sustainable use of modified binary and ternary pozzolans/ GGBS in place of 20% PFA in conventional ferrock.\n\nThe conventional ferrock contains 8% MK and 20% PFA (as binary pozzolans), 60% iron powder, 12% lime and 2% oxalic acid (set 1). An effort has been made to formulate the different mixes of 10,20,30,40 and 50% by keeping 60% iron powder, 12% lime, 8% MK and 2% oxalic acid constant but replacing 20% PFA with 20% GGBS (set 2), with 10%PFA+10%GGBS (set 3) and with 10%PFA+10%SF (set 4). A target compressive strength of C32/40 or M40 concrete was selected for this study to achieve and compare results with the control mix (0% ferrock) and conventional ferrock during the experimental investigation of modified novel materials. 10-20% ratios of modified mixes exhibited the best performance and achieved the threshold strength of 60 MPa of high-strength cement concrete. Maximum compressive strength of 65 MPa was achieved by the 10% mix of set 2 (20% GGBS), followed by 20% mix ratios of set 3 (10%PFA+10%GGBS) and set 4 (10%PFA+10%SF), achieving 64 MPa. Whereas the 10% mix of the conventional ferrock (set1) reached 63 MPa strength, and the control mix with no ferrock gained 57 MPa strength at 56 days of curing. Overall, an increase of 2-13% compressive strength was observed with10- 30% mixes of all the SCMs; however, a decrease of 3-27% was observed with 40-50% use of SCMs. The use of iron powder increased the ductility of ferrock-based SCMs mixes and exhibited more flexural strength. Set 3 performed the best in exhibiting up to 5.8 MPa flexural strength, followed by set 4, set 2 and lastly, set 1 of conventional ferrock. 20% and 30% mix ratios exhibited flexural strength of more than 5% MPa, better than 10% and 40/ 50% mixes. The study supports the use of 10-20% ferrock-based SCMs for high-strength concrete and 10-50% for concrete mixes with a target strength of C32/40 or M40 to decrease the CO2 footprints of the construction industry significantly.","PeriodicalId":372397,"journal":{"name":"Journal of Materials and Polymer Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Engineering Properties of Iron-Based Binary and Ternary Pozzolanic Supplementary Cementitious Materials\",\"authors\":\"\",\"doi\":\"10.47485/2832-9384.1024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characteristic global warming potential of ordinary Portland cement (OPC) makes it a huge challenge for researchers to weigh its enormous use with potentially feasible engineering properties versus the environmental impacts. The formulation of sustainable, economical, and greener supplementary cementitious materials (SCMs) is an ongoing phenomenon, attracting the large-scale attention of industry/ academia. The formulation of ferrock by David Stone with low embodied energy, lower consumption of natural resources and minimal global warming potential has paved the way for the use of novel material comprising iron powder, pozzolans (pulverised fly ash (PFA) and metakaolin (MK) and lime exhibiting at par performance with OPC. However, a gap has been identified in its formulation, raising a further research question on how it will perform if PFA and MK are replaced by ground granulated blast furnace slag (GGBS) or other pozzolans like silica fume (SF) etc., with different mix ratios. Therefore, an endeavour has been made in this study to identify the engineering properties with sustainable use of modified binary and ternary pozzolans/ GGBS in place of 20% PFA in conventional ferrock.\\n\\nThe conventional ferrock contains 8% MK and 20% PFA (as binary pozzolans), 60% iron powder, 12% lime and 2% oxalic acid (set 1). An effort has been made to formulate the different mixes of 10,20,30,40 and 50% by keeping 60% iron powder, 12% lime, 8% MK and 2% oxalic acid constant but replacing 20% PFA with 20% GGBS (set 2), with 10%PFA+10%GGBS (set 3) and with 10%PFA+10%SF (set 4). A target compressive strength of C32/40 or M40 concrete was selected for this study to achieve and compare results with the control mix (0% ferrock) and conventional ferrock during the experimental investigation of modified novel materials. 10-20% ratios of modified mixes exhibited the best performance and achieved the threshold strength of 60 MPa of high-strength cement concrete. Maximum compressive strength of 65 MPa was achieved by the 10% mix of set 2 (20% GGBS), followed by 20% mix ratios of set 3 (10%PFA+10%GGBS) and set 4 (10%PFA+10%SF), achieving 64 MPa. Whereas the 10% mix of the conventional ferrock (set1) reached 63 MPa strength, and the control mix with no ferrock gained 57 MPa strength at 56 days of curing. Overall, an increase of 2-13% compressive strength was observed with10- 30% mixes of all the SCMs; however, a decrease of 3-27% was observed with 40-50% use of SCMs. The use of iron powder increased the ductility of ferrock-based SCMs mixes and exhibited more flexural strength. Set 3 performed the best in exhibiting up to 5.8 MPa flexural strength, followed by set 4, set 2 and lastly, set 1 of conventional ferrock. 20% and 30% mix ratios exhibited flexural strength of more than 5% MPa, better than 10% and 40/ 50% mixes. The study supports the use of 10-20% ferrock-based SCMs for high-strength concrete and 10-50% for concrete mixes with a target strength of C32/40 or M40 to decrease the CO2 footprints of the construction industry significantly.\",\"PeriodicalId\":372397,\"journal\":{\"name\":\"Journal of Materials and Polymer Science\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials and Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47485/2832-9384.1024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47485/2832-9384.1024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

普通硅酸盐水泥(OPC)具有独特的全球变暖潜力,这使得研究人员在权衡其潜在可行的工程性能和环境影响方面面临巨大挑战。可持续、经济、绿色的补充胶凝材料(SCMs)的研制是一个持续发展的现象,引起了工业界/学术界的广泛关注。David Stone的铁岩配方具有低能耗、低自然资源消耗和最小的全球变暖潜力,为使用新型材料铺平了道路,这些材料包括铁粉、火山灰(粉状粉煤灰(PFA)、偏高岭土(MK)和石灰,表现出与OPC相当的性能。然而,在其配方中发现了一个差距,提出了一个进一步的研究问题,即如果用磨粒高炉渣(GGBS)或其他火山灰(如硅灰(SF)等)以不同的混合比例取代PFA和MK,它将如何发挥作用。因此,在本研究中,研究人员努力确定可持续使用改性的二元和三元火山灰/ GGBS代替传统铁岩中20% PFA的工程性质。常规铁岩含有8%的MK和20%的PFA(作为二元火山灰),60%的铁粉,12%的石灰和2%的草酸(第1组)。通过保持60%的铁粉,12%的石灰,8%的MK和2%的草酸不变,但用20%的GGBS(第2组)代替20%的PFA,努力配制出10、20、30、40和50%的不同混合物。10%PFA+10%GGBS(组3)和10%PFA+10%SF(组4)。本研究选择C32/40或M40混凝土的目标抗压强度,在改性新材料的实验研究中,与对照配合比(0%铁岩)和常规铁岩的结果进行比较。10 ~ 20%的掺合料性能最佳,达到高强水泥混凝土的阈值强度60 MPa。当配比为10% (20% GGBS)时,最大抗压强度为65 MPa,其次是配比为20% (10% pfa +10%GGBS)和配比为20% (10% pfa +10% sf)的组合,最大抗压强度为64 MPa。而10%的常规铁岩(set1)混合物的强度达到63 MPa,不含铁岩的对照混合物在养护56天后的强度达到57 MPa。总的来说,所有SCMs的10- 30%的混合量增加了2-13%的抗压强度;然而,使用40-50%的SCMs可减少3-27%。铁粉的加入提高了铁岩基SCMs的延展性,并表现出更高的抗弯强度。第3组抗弯强度最高,达到5.8 MPa,其次是第4组、第2组,最后是第1组。20%和30%混合比的抗弯强度大于5% MPa,优于10%和40/ 50%混合比。该研究支持在高强度混凝土中使用10-20%的铁岩基SCMs,在混凝土混合物中使用10-50%的SCMs,目标强度为C32/40或M40,以显著减少建筑行业的二氧化碳足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of Engineering Properties of Iron-Based Binary and Ternary Pozzolanic Supplementary Cementitious Materials
The characteristic global warming potential of ordinary Portland cement (OPC) makes it a huge challenge for researchers to weigh its enormous use with potentially feasible engineering properties versus the environmental impacts. The formulation of sustainable, economical, and greener supplementary cementitious materials (SCMs) is an ongoing phenomenon, attracting the large-scale attention of industry/ academia. The formulation of ferrock by David Stone with low embodied energy, lower consumption of natural resources and minimal global warming potential has paved the way for the use of novel material comprising iron powder, pozzolans (pulverised fly ash (PFA) and metakaolin (MK) and lime exhibiting at par performance with OPC. However, a gap has been identified in its formulation, raising a further research question on how it will perform if PFA and MK are replaced by ground granulated blast furnace slag (GGBS) or other pozzolans like silica fume (SF) etc., with different mix ratios. Therefore, an endeavour has been made in this study to identify the engineering properties with sustainable use of modified binary and ternary pozzolans/ GGBS in place of 20% PFA in conventional ferrock. The conventional ferrock contains 8% MK and 20% PFA (as binary pozzolans), 60% iron powder, 12% lime and 2% oxalic acid (set 1). An effort has been made to formulate the different mixes of 10,20,30,40 and 50% by keeping 60% iron powder, 12% lime, 8% MK and 2% oxalic acid constant but replacing 20% PFA with 20% GGBS (set 2), with 10%PFA+10%GGBS (set 3) and with 10%PFA+10%SF (set 4). A target compressive strength of C32/40 or M40 concrete was selected for this study to achieve and compare results with the control mix (0% ferrock) and conventional ferrock during the experimental investigation of modified novel materials. 10-20% ratios of modified mixes exhibited the best performance and achieved the threshold strength of 60 MPa of high-strength cement concrete. Maximum compressive strength of 65 MPa was achieved by the 10% mix of set 2 (20% GGBS), followed by 20% mix ratios of set 3 (10%PFA+10%GGBS) and set 4 (10%PFA+10%SF), achieving 64 MPa. Whereas the 10% mix of the conventional ferrock (set1) reached 63 MPa strength, and the control mix with no ferrock gained 57 MPa strength at 56 days of curing. Overall, an increase of 2-13% compressive strength was observed with10- 30% mixes of all the SCMs; however, a decrease of 3-27% was observed with 40-50% use of SCMs. The use of iron powder increased the ductility of ferrock-based SCMs mixes and exhibited more flexural strength. Set 3 performed the best in exhibiting up to 5.8 MPa flexural strength, followed by set 4, set 2 and lastly, set 1 of conventional ferrock. 20% and 30% mix ratios exhibited flexural strength of more than 5% MPa, better than 10% and 40/ 50% mixes. The study supports the use of 10-20% ferrock-based SCMs for high-strength concrete and 10-50% for concrete mixes with a target strength of C32/40 or M40 to decrease the CO2 footprints of the construction industry significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信