基于谱聚类的多正电子源同步时空跟踪

Hongquan Li, G. Pratx
{"title":"基于谱聚类的多正电子源同步时空跟踪","authors":"Hongquan Li, G. Pratx","doi":"10.1109/NSSMIC.2016.8069424","DOIUrl":null,"url":null,"abstract":"Tracking point-like objects in optically opaque environments has applications in studying flow in chemical systems, monitoring respiratory motion, and possibly investigating the trafficking of single cell at the whole-body level. One approach is to label the point-like object (particle, fiducial marker, or cell) with positron-emitting tracers. The information contained in the list-mode measurements can be utilized to directly track the motion of a single source, either frame-by-frame or continuously using a trajectory reconstruction algorithm. Applying this concept to multiple simultaneously moving sources is more challenging, in that detected pairs of coincident annihilation photons from different sources are not directly distinguishable. To tackle this problem, we applied spectral clustering methods to cluster the list-mode data into groups of coincidence lines corresponding to distinct sources. With this method, each individual source can then be independently tracked using existing techniques. Advantaged of this method are that the number of clusters can be extracted from the data, and that the method operates directly on the list-mode data, without needing to backproject the CLs into the spatial domain.","PeriodicalId":184587,"journal":{"name":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous spatiotemporal tracking of multiple positron sources using spectral clustering\",\"authors\":\"Hongquan Li, G. Pratx\",\"doi\":\"10.1109/NSSMIC.2016.8069424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking point-like objects in optically opaque environments has applications in studying flow in chemical systems, monitoring respiratory motion, and possibly investigating the trafficking of single cell at the whole-body level. One approach is to label the point-like object (particle, fiducial marker, or cell) with positron-emitting tracers. The information contained in the list-mode measurements can be utilized to directly track the motion of a single source, either frame-by-frame or continuously using a trajectory reconstruction algorithm. Applying this concept to multiple simultaneously moving sources is more challenging, in that detected pairs of coincident annihilation photons from different sources are not directly distinguishable. To tackle this problem, we applied spectral clustering methods to cluster the list-mode data into groups of coincidence lines corresponding to distinct sources. With this method, each individual source can then be independently tracked using existing techniques. Advantaged of this method are that the number of clusters can be extracted from the data, and that the method operates directly on the list-mode data, without needing to backproject the CLs into the spatial domain.\",\"PeriodicalId\":184587,\"journal\":{\"name\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2016.8069424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2016.8069424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在光学不透明环境中跟踪点状物体在研究化学系统中的流动、监测呼吸运动以及可能在全身水平上调查单细胞的运输方面具有应用价值。一种方法是用正电子发射示踪剂标记点状物体(粒子、基准标记物或细胞)。列表模式测量中包含的信息可以用于直接跟踪单个源的运动,无论是逐帧还是连续使用轨迹重建算法。将这一概念应用于多个同时移动的源更具挑战性,因为从不同源检测到的同步湮灭光子对不能直接区分。为了解决这一问题,我们应用谱聚类方法将列表模式数据聚类成对应不同源的符合线组。使用这种方法,每个单独的源可以使用现有的技术进行独立的跟踪。该方法的优点是可以从数据中提取集群的数量,并且该方法直接对列表模式数据进行操作,而不需要将CLs反向投影到空间域中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous spatiotemporal tracking of multiple positron sources using spectral clustering
Tracking point-like objects in optically opaque environments has applications in studying flow in chemical systems, monitoring respiratory motion, and possibly investigating the trafficking of single cell at the whole-body level. One approach is to label the point-like object (particle, fiducial marker, or cell) with positron-emitting tracers. The information contained in the list-mode measurements can be utilized to directly track the motion of a single source, either frame-by-frame or continuously using a trajectory reconstruction algorithm. Applying this concept to multiple simultaneously moving sources is more challenging, in that detected pairs of coincident annihilation photons from different sources are not directly distinguishable. To tackle this problem, we applied spectral clustering methods to cluster the list-mode data into groups of coincidence lines corresponding to distinct sources. With this method, each individual source can then be independently tracked using existing techniques. Advantaged of this method are that the number of clusters can be extracted from the data, and that the method operates directly on the list-mode data, without needing to backproject the CLs into the spatial domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信