网络广告布局的自动生成:一个合成数据集和一个深度学习基线模型

R. Carletto, H. Cardot, N. Ragot
{"title":"网络广告布局的自动生成:一个合成数据集和一个深度学习基线模型","authors":"R. Carletto, H. Cardot, N. Ragot","doi":"10.1049/icp.2021.1443","DOIUrl":null,"url":null,"abstract":"Automatic generation of advertising layouts shows high economic interest, but as identified with our industrial partner, there is no public document layout dataset that matches this particular application. In this context, we produced two synthetic datasets that allow both the evaluation and training of any learning model on web advertising layout generation, and a small dataset of real cases to demonstrate the contribution of our work. We compared the results obtained by different learning models on the real cases, with and without prior use of our synthetic datasets, and our results show that these datasets allow to build and decisively improve models for the generation of real-world advertising layouts. Our three datasets, as well as useful data processing tools, are available at: <ext-link ext-link-type=\"uri\" xlink:href=\"https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master\">https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master</ext-link>","PeriodicalId":431144,"journal":{"name":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Generation of Web Advertising Layouts: A Synthetic Dataset and a Deep Learning Baseline Model\",\"authors\":\"R. Carletto, H. Cardot, N. Ragot\",\"doi\":\"10.1049/icp.2021.1443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic generation of advertising layouts shows high economic interest, but as identified with our industrial partner, there is no public document layout dataset that matches this particular application. In this context, we produced two synthetic datasets that allow both the evaluation and training of any learning model on web advertising layout generation, and a small dataset of real cases to demonstrate the contribution of our work. We compared the results obtained by different learning models on the real cases, with and without prior use of our synthetic datasets, and our results show that these datasets allow to build and decisively improve models for the generation of real-world advertising layouts. Our three datasets, as well as useful data processing tools, are available at: <ext-link ext-link-type=\\\"uri\\\" xlink:href=\\\"https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master\\\">https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master</ext-link>\",\"PeriodicalId\":431144,\"journal\":{\"name\":\"11th International Conference of Pattern Recognition Systems (ICPRS 2021)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th International Conference of Pattern Recognition Systems (ICPRS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/icp.2021.1443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Conference of Pattern Recognition Systems (ICPRS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.1443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动生成广告布局显示出很高的经济利益,但正如我们的工业合作伙伴所确定的那样,没有与此特定应用相匹配的公共文档布局数据集。在这种情况下,我们制作了两个合成数据集,允许对网络广告布局生成的任何学习模型进行评估和训练,以及一个真实案例的小数据集来展示我们的工作贡献。我们比较了不同学习模型在真实案例中获得的结果,有和没有事先使用我们的合成数据集,我们的结果表明,这些数据集允许建立并果断地改进模型,以生成现实世界的广告布局。我们的三个数据集,以及有用的数据处理工具,可在:https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of Web Advertising Layouts: A Synthetic Dataset and a Deep Learning Baseline Model
Automatic generation of advertising layouts shows high economic interest, but as identified with our industrial partner, there is no public document layout dataset that matches this particular application. In this context, we produced two synthetic datasets that allow both the evaluation and training of any learning model on web advertising layout generation, and a small dataset of real cases to demonstrate the contribution of our work. We compared the results obtained by different learning models on the real cases, with and without prior use of our synthetic datasets, and our results show that these datasets allow to build and decisively improve models for the generation of real-world advertising layouts. Our three datasets, as well as useful data processing tools, are available at: https://github.com/romain-rsr/synth_datasets_for_web_advertising_layout/tree/master
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信