基于mvs的半监督聚类

Yang Yan, Lihui Chen, C. K. Chan
{"title":"基于mvs的半监督聚类","authors":"Yang Yan, Lihui Chen, C. K. Chan","doi":"10.1109/ICICS.2013.6782907","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MVS-based semi-supervised clustering\",\"authors\":\"Yang Yan, Lihui Chen, C. K. Chan\",\"doi\":\"10.1109/ICICS.2013.6782907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.\",\"PeriodicalId\":184544,\"journal\":{\"name\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2013.6782907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半监督聚类是一种流行的机器学习技术,用于挑战数据分类任务,当用户可以获得一些先验知识时。在本文中,我们报告了我们新提出的半监督聚类框架的实证研究,该框架利用多个视点在先验知识的帮助下进行相似性度量。针对类标签或成对约束给出的知识,分别开发了两种不同的基于mvs的方法,即LMVS和PMVS。在一些基准数据集上进行的大量实验研究证明了所提出方法的有效性。本文还比较了LMVS和PMVS,以及一些著名的半监督聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MVS-based semi-supervised clustering
Semi-supervised clustering is a popular machine learning technique, used for challenge data categorization tasks, when some prior knowledge is available to users. In this paper, we report the empirical studies on our newly proposed semi-supervised clustering framework, which utilizes multiple viewpoints for the similarity measure, with the help of the prior knowledge. Two different MVS-based approaches are developed for knowledge given in either class labels or pair-wise constraints, namely LMVS and PMVS respectively. Extensive experimental studies performed on a few benchmark datasets demonstrate the effectiveness of the proposed methods. Comparisons are also made between LMVS and PMVS, together with a few well-known semi-supervised clustering algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信