基于Starling Block行为的改进布谷鸟搜索

W. Xuguang, Chen Hong
{"title":"基于Starling Block行为的改进布谷鸟搜索","authors":"W. Xuguang, Chen Hong","doi":"10.1109/iccsn.2018.8488245","DOIUrl":null,"url":null,"abstract":"Cuckoo Search is a new metaheuristic algorithm. However, has some shortcomings like low convergence precision and easily relapsing into the local optima. In this paper, we introduce the collective behaviour of the starling group into CS algorithm, which can improve the precision and the searching range. In order to balance the convergence speed and MSE, a new variable step-size algorithm has been presented. Simulation results prove that compared with the basic CS algorithm, the new algorithm can avoid the local optimum and attain higher convergence precision.","PeriodicalId":243383,"journal":{"name":"2018 10th International Conference on Communication Software and Networks (ICCSN)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Cuckoo Search Based on Starling Block Behavior\",\"authors\":\"W. Xuguang, Chen Hong\",\"doi\":\"10.1109/iccsn.2018.8488245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cuckoo Search is a new metaheuristic algorithm. However, has some shortcomings like low convergence precision and easily relapsing into the local optima. In this paper, we introduce the collective behaviour of the starling group into CS algorithm, which can improve the precision and the searching range. In order to balance the convergence speed and MSE, a new variable step-size algorithm has been presented. Simulation results prove that compared with the basic CS algorithm, the new algorithm can avoid the local optimum and attain higher convergence precision.\",\"PeriodicalId\":243383,\"journal\":{\"name\":\"2018 10th International Conference on Communication Software and Networks (ICCSN)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Communication Software and Networks (ICCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccsn.2018.8488245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccsn.2018.8488245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布谷鸟搜索是一种新的元启发式算法。但也存在收敛精度低、易陷入局部最优等缺点。本文将椋鸟群体行为引入CS算法,提高了CS算法的搜索精度和搜索范围。为了平衡收敛速度和均方差,提出了一种新的变步长算法。仿真结果表明,与基本的CS算法相比,新算法可以避免局部最优,获得更高的收敛精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Cuckoo Search Based on Starling Block Behavior
Cuckoo Search is a new metaheuristic algorithm. However, has some shortcomings like low convergence precision and easily relapsing into the local optima. In this paper, we introduce the collective behaviour of the starling group into CS algorithm, which can improve the precision and the searching range. In order to balance the convergence speed and MSE, a new variable step-size algorithm has been presented. Simulation results prove that compared with the basic CS algorithm, the new algorithm can avoid the local optimum and attain higher convergence precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信